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Abstract: In future higher penetrations of electrical loads in low-voltage distribution grids are to 1

be expected. To prevent grid overload, a possible solution is coordination of controllable loads. 2

Typical examples might be charging of electric vehicles or operation of electric heat pumps. Such 3

loads are associated with specific requirements that should be fulfilled if possible. However, at 4

the same time a safe grid operation must be ensured. To this end, a corresponding optimal power 5

flow optimization problem might be formulated and solved. This article gives a comprehensive 6

review of the state-of-the-art of optimal power flow formulations. It is investigated, which constraint 7

handling techniques are used and how hyper parameters are tuned when solving optimal power 8

flow problems using metaheuristic solvers and how controllable loads and fluctuating renewable 9

production are incorporated into optimal power flow formulations. Therefore, the literature is 10

reviewed for pre-defined criteria. The results show possible gaps to be filled with future research: 11

extended optimal power flow formulations to account for controllable loads, investigation of effects 12

of choosing constraint handling techniques or hyper parameter tuning on the performance of the 13

metaheuristic solver and automated methods for determining optimal values for hyper parameters. 14

Keywords: optimal power flow; metaheuristics; constraint handling techniques; hyper parameter 15

tuning; electrical distribution grids 16

1. Introduction 17

Higher penetrations of electrical loads – like for example charging stations for charging 18

electric vehicles or electrical heat pumps for heating houses – will lead to higher electrical 19

loads in future electrical low-voltage distribution grids. Besides this, more fluctuating 20

renewable generators, like for example photovoltaic power systems, will also need to be 21

integrated in these distribution grids. Existing grids might at some point be over-loaded 22

by these additional electrical loads and fluctuating renewable generators. One possible 23

solution to prevent this overload, might be to reinforce existing distribution grids or build 24

new ones. However, this might take a long time and also come along with high costs. 25

Another solution to prevent this overload might be the coordination of those additional 26

electrical loads – given those loads are controllable [1]. Examples for these kinds of loads 27

might be charging stations to charge electric vehicles (EVs) or electrical heat pumps together 28

with thermal energy storages. 29

For this purpose of coordinating multiple controllable electrical loads in electrical 30

low voltage distribution grids, an optimization problem can be formulated. The goal of 31

this optimization problem formulation is to capture physical laws of grid operation (like 32

power balance, keeping permissable nodal voltage limits or loading limits of power lines 33

and transformers) and also the controllable components (for example minimum run/shut 34

down time, maximum gradients or minimum/maximum power). The outcome of solving 35

the formulated optimization problem would be an optimized time series telling what 36
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controllable load might be charged with what power at what timestep. This way an optimal 37

coordination of multiple controllable electrical loads can be realized; keeping requirements 38

(like given heat demands that need to be fulfilled by heat pumps or desired charging levels 39

of EVs) and preventing grid overload, also attributing for fluctuating generation. 40

These kind of optimization problems are known as optimal power flow (OPF) prob- 41

lems. These OPF problems are non-linear, non-convex (this will be discussed in subsec- 42

tion 3.1) and generally time intensive to solve – especially if integer or binary variables 43

are involved in the OPF formulation (which might be the case for realistic modelling of 44

certain components, like for example minimum/maximum output power of heat pumps) 45

[2]. Analytical solvers – typically based on gradient descent methods – cannot guarantee to 46

find the global optimum of such non-convex optimization problems and might take very 47

long to converge [3]. Alternative solutions for OPF problems are therefore being researched. 48

One very prominent approach is the usage of metaheuristics (this will be discussed in 49

section 3.2) for solving such OPF problems. These metaheuristics cannot guarantee to find 50

the global optimimum – however, classical analitycal solvers also cannot – and can also find 51

solutions quicker than those analytical solvers [4]. Often, these metaheuristics are based on 52

swarm intelligence – taking inspiration from natural swarms like birds or ants – or also 53

from evolution. 54

However, metaheuristics only solve unconstrained optimization problems [5] – so can 55

only be used to maximize or minimize a certain objective function without consideration 56

of constraints. But OPF problems consist of many constraints (to ensure proper operation 57

of the considered grid without overload or also proper operation of connected loads 58

and keeping other requirements). So in order to utilize metaheuristics for solving OPF 59

problems, one first has to ensure that constraints are being taken into account. Therefore, 60

there are constraint handling techniques [6]. Besides this, metaheuristics have certain 61

hyper parameters to be tuned [7]. These hyper parameters determine the “performance” 62

of the metaheuristic – so how fast the metaheuristic converges to a result and also the 63

optimality of that result. So besides constraint handling techniques one also needs to tune 64

hyper parameters in order to utilize metaheuristics for solving OPF problems (or generally 65

optimization problems) and to achieve results as optimal as possible. 66

The goal of this review paper is not to show how the mentioned optimization problem 67

formulation for controlling multiple controllable electrical loads in electrical low voltage 68

distribution grids might look like. And also not to give an overview of metaheuristics 69

typically used for solving these kind of optimal power flow problems; [8] already gives 70

here an up to date comprehensive overview. However, in [8] it is not mentioned which 71

constraint handling techniques were used in the reviewed articles, or how hyper parameters 72

of the metaheuristics were tuned. In contrast, an overview of available constraint handling 73

techniques is given in [5] – however, without connection to OPF problems. So the goal 74

of this review paper is to show what constraint handling techniques are typically used 75

when solving OPF problems using metaheuristics. And how hyper parameters of those 76

metaheuristics are tuned. Besides this, the inclusion of controllable loads and fluctuating 77

renewable generation, like wind and PV is examined. Therefore, a comprehensive literature 78

review is carried out. 79

The remainder of this review is structured as follows: In section 2 the methodology 80

for the literature review is described, showing how research was conducted and which 81

criteria are important for the review. Section 3 describes some background regarding 82

optimal power flow, metaheuristics and constraint handling techniques – but just as much 83

as needed to be self-contained. In section 4 the results of the literature review are shown. 84

Finally, in section 5 the results are discussed and a conclusion is drawn. 85

2. Materials and Methods 86

Relevant literature is found using scientific literature data bases. The data bases 87

considered for this review are: 88

• Scopus and 89
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• IEEE Xplore. 90

In these literature data bases, the results are further refined using advanced queries. To keep 91

relevant literature up to date, the results are constrained to years from 2016 to 2024 (both 92

included). Furthermore, only open accessible (gold open access) articles are considered. 93

Relevant keywords are: 94

• “optimal power flow”, 95

• “meta heuristic” and 96

• “constraint handling technique” 97

The so found articles afterwards are scanned for certain criteria: 98

• The used optimal power flow formulation (what is the objective of optimization?) 99

• the used metaheuristic 100

• the used constrained handling technique 101

• the used technique for tuning hyper parameters 102

• are violations of constraints (node voltages, transformer load) monitored? 103

• are controllable loads or fluctuating renewables considered? 104

• is a multiple timestep or only a single timestep problem considered? 105

• which grid topology, at which voltage level is considered? 106

• how is the load flow formulated? 107

3. Background 108

It is not the scope of this article to give a comprehensive overview of existing meta- 109

heuristics and constraint handling techniques or the concept of optimal power flow. How- 110

ever, for the sake of being self-contained, these points are introduced here. 111

3.1. Optimal Power Flow 112

Optimal power flow problems are a family of optimisation problems that all try 113

to optimize power flows in an electrical grid. There might be many different goals for 114

this optimisation – each associated to a corresponding objective function. However, all 115

formulations have one thing in common: a safe operation of the electrical grid is to be 116

ensured; for example power balance and keeping equipment in the grid in tolerable 117

operational limits. This leads to corresponding constraints. The decision variables are 118

made up of controllable variables and state variables. The control variables can be directly 119

acted upon by grid operators: for example the output power of controllable, thermal power 120

plants or the tap setting of transformers. The state variables are coupled to the control 121

variables: via constraints that describe the operation of the grid. For example node voltages 122

or voltage angles depend on the power drawn from or fed into the grid. Parameters are 123

given as demands that need to be fulfilled and information about the grid itself – which is 124

gathered in form of an admittance matrix, reflecting the physical properties of the grid. 125

By the nature of physical laws describing the grid operation, these optimal power flow 126

optimisation problems are [9] 127

non-linear: either the objective function or constraints cannot be formulated exclusively 128

as linear combination of the decision variables. For example f (x) = x1 + x2 is linear, 129

but f (x) = x1x2 is not linear. Non-linearity might lead to non-convexnes. 130

non-convex: there is not one global optimum, but many local optima (in which solvers 131

might “get stuck”), an example is given in figure 1. 132

constrained: there are constraints involved in the formulation of the optimization problem, 133

for example x1 < 2x2. 134
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Figure 1. Example graph of a non-convex function, here f (x) = x4 − 4x2 + 2x, with local and global
optima for minimization. Solvers might “get stuck” in local optima. For ease of comprehension and
visualization, this is just a one dimensional example. However, the same also holds for n dimensional
examples.

A generic non-linear, constrained OPF optimisation problem might look like shown in 135

equation (1): 136

min. f (x)

s. t. gi(x) ≤ 0 ∀i ∈ I

hj(x) = 0 ∀j ∈ J
(1)

Here, f : Rm+n → R is the objective function – in the context of OPF this might typically be 137

some kind of cost metric to be minimised. g and h are inequality and equality constraints, 138

respectively, and I and J are the corresponding sets of all inequality and equality constraints, 139

respectively. x ∈ Rm+n is a vector of decision variables that may be sub divided in a vector 140

of control variables u ∈ Rm and a vector of state variables v ∈ Rn, such that: x = (u, v)⊺ 141

[9]. Control variables are those variables that can be directly acted upon – for example 142

active power output of thermal generators, tap settings of tap changing transformers or 143

reactive power fed by shunt var compensators. State variables, on the other hand, are those 144

variables that are affected by the settings of control variables – for example node voltage 145

magnitudes and angles or apparent powers flowing through the lines. 146

3.1.1. Ways to Calculate Load Flow 147

To determine optimal power flow, it is important to calculate node voltages and 148

currents on the lines in dependence of load/generation in the grid. This is usually referred 149

to as load flow. From the view point of the optimization problem, the load flow links the 150

state variables to the control variables. In general, there are two ways to calculate this 151

load flow, which differ in their applicability: (1) The “complete” power flow is valid for 152

arbitrary grid topologies and (2) the forward-backward-sweep, which is only valid for 153

radial, non-meshed grids. 154

Complete Power Flow 155

The formulation for the complete power flow is valid for arbitrary grid topologies. It 156

is based on the nodel voltage analysis [10]. Provided information on grid topology, given 157

in the form of an admittance matrix Y ∈ Cn×n for a grid consisting of n buses and currents 158

I ∈ Cn drawn from/fed into the grid at the n nodes, the voltages V ∈ Cn at those n nodes, 159

can be calculated according to equation (2). 160

I = Y V (2)

Typically, admittances will be given in cartesian form such that Yij = Gij + jBij, where 161

Gij is the conductance and Bij is the susceptance of the ij-th element of the admittance 162

matrix. Node votlages are typically given in polar form such that Vi = Vi exp
(
j(ωt + δi)

)
, 163
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where Vi is the magnitude and δi is the angle of voltage at node i. Formulating active and 164

reactive power balances for each node in the grid, this will lead to formulations as given in 165

equations (3) and (4): 166

PG,i − PL,i − Vi ∑
j∈N\i

Vj
(
Gij cos(δi − δj) + Bij sin(δi − δj)

)
= 0 ∀i ∈ N, (3)

where N is the set of all nodes in the grid. PG,i and PL,i denote active power fed into and 167

taken from the grid at node i, respectively. The remaining term calculates the active power 168

flowing through the lines attached to node i. 169

QG,i − QL,i − Vi ∑
j∈N\i

Vj
(
Gij cos(δi − δj)− Bij sin(δi − δj)

)
= 0 ∀i ∈ N, (4)

where QG,i and QL,i denote reactive power fed into and taken from the grid at node i, 170

respectively. The remaining term calculates the reactive power flowing through the lines 171

attached to node i. 172

Forward-Backward-Sweep 173

The forward-backward-sweep is only valid for radial grids with no meshes. It is an 174

iterative calculation [11]. Each iteration consists of a forward sweep and a backward sweep. 175

In the first iteration, it is assumed that all node voltage magnitudes are at the nominal level. 176

Given active and reactive power demands/generations Si at the nodes as well as assumed 177

voltages Vi at the nodes, active and reactive currents Ii flowing out/in the grid at those 178

nodes are computed according to equation (5). 179

Ii =
Si
Vi

(5)

Now in the forward sweep, starting at the last node moving towards the first node, the 180

currents Iik flowing on the lines are calculated according to equation (6): 181

Iik = ∑
i∈N
i≥k

Ii. (6)

In the following backward sweep, startig at the fist node moving towards the last node, 182

the node voltages are updated using the previously calculated line currents and line 183

impedances Zik = Rik + jXik according to equation (7): 184

Vk = Vi − (Rik + jXik)Iik. (7)

This will result in node voltages lower than the ones initially assumed. In the following 185

iterations this will lead to accordingly updated line currents. The end of iteration is reached 186

once the difference in node voltages between two consecutive iterations is smaller than a 187

certain delta. A visualization of a radial grid line and corresponding quantities is given in 188

figure 2 189

V1 Vi

Zik = Rik + jXik

Iik

Vk Vn

I1 Ii Ik In

Figure 2. A grid line and corresponding quantities for calculating forward-backward-sweep.
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3.1.2. Typical Objectives for Optimal Power Flow Problems 190

There is not the one and only OPF formulation; there may be different objectives that 191

lead to different formulations of the objective function. Some objectives commonly found 192

in literature are summarized here. At the end of this subsection will be an outlook what a 193

formulation for an objective for coordinating controllable loads might look like. 194

Minimizing Fuel Costs 195

The goal here is to minimize the fuel costs for thermal power plants to supply all the 196

required load. This is formulated according to equation (8): 197

min. costs(PG) = ∑
i∈NG

(
ai + biPG,i + ciP2

G,i
)
, (8)

where NG is the set of all controllable generators attached to the grid. ai, bi and ci are 198

coefficients describing the fuel cost for the i-th generator with output power PG,i. 199

Minimizing Active Power Losses 200

Here, the objective is to minimize active power losses in all transmission lines of the 201

grid. This is formulated according to equation (9) 202

min. Ploss(V) = ∑
i∈N

∑
j∈N\i

Gij
(
V2

i + V2
j − 2ViVj cos(δi − δj)

)
, (9)

where Vi and Vj are voltage magnitudes as nodes i and j, respectively. Similarly δi and δj 203

are voltage angles and Gij is the conductance of the ij-th element of the system admittance 204

matrix Y. N is the set of nodes in the grid. 205

Minimizing Voltage Deviations 206

The objective is to minimize voltage deviations across all nodes in the considered grid. 207

This is formulated according to equation (10) 208

min. Voltage Deviation(V) = ∑
i∈N

|1 − Vi| (10)

where Vi is the voltage magnitude (in p.u.) at node i and N is the set of nodes in the grid. 209

Outlook: Possible Objective for Coordinating Controllable Loads 210

An objective for coordinating multiple controllable loads, as mentioned in the introduc- 211

tion (e. g. charging EVs or electrical heat pumps) might for example look like equation (11) 212

max. ∑
i∈NEV

(PEV,i)− p ∑
i∈NHP

Pslack,i. (11)

Here, NEV and NHP are the sets of nodes with a wallbox and a heat pump connected to 213

it, respectively. PEV,i is the charging power of the EV charging at node i and Pslack,i is the 214

amount of thermal energy missing to fulfil the thermal demand of the houshold at node 215

i. p is an according penalty, which will help minimize Pslack. Of course, this will also 216

require corresponding equality constraints for balancing thermal demands of households. 217

However, this is just supposed to be a quick outlook, so these additional constraints will 218

not be described here. 219

3.1.3. Equality Constraints 220

Equality constraints ensure power balance in the grid, thus enforcing all the required 221

demand is fulfilled by appropriate generation. There are two separate sets of equality 222

constraints: one set for active power balance and another set for reactive power balance. 223

Those constraints were already described in equations (3) and (4) in section 3.1.1. 224



Version February 25, 2025 submitted to Electricity 7

3.1.4. Inequality Constraints 225

Inequality constraints ensure safe operation of the grid, keeping all decision variables 226

in tolerable operating limits. This way it can be ensured that no grid infrastructure is 227

damaged and a safe grid operation is achieved. These constraints are formulated according 228

to equations (12) to (17). 229

Pmin
G,i ≤ PG,i ≤ Pmax

G,i ∀i ∈ NG (12)

Qmin
G,i ≤ QG,i ≤ Qmax

G,i ∀i ∈ NG (13)

Vmin
G,i ≤ VG,i ≤ Vmax

G,i ∀i ∈ NG (14)

amin
T,i ≤ aT,i ≤ amax

T,i ∀i ∈ NT (15)

Vmin
i ≤ Vi ≤ Vmax

i ∀i ∈ N (16)

Smin
i ≤ Si ≤ Smax

i ∀i ∈ L (17)

Here, PG,i, QG,i and VG,i are active power, reactive power and voltage of the i-th Generator, 230

NG is the set of all generators. aT,i is the tap setting of the i-th transformer and NT is the set 231

of all generators. Vi and Si are voltage at i-th node and apparent power flowing through 232

i-th line, respectively. N and L are the sets of all nodes and all lines, respectively. 233

3.2. Population-Based Metaheuristics and Why to Use Them 234

Population-based metaheuristics can be used as an alternative to a classical solver. 235

So a metaheuristic instead of a classical solver is used to solve an optimization problem. 236

To optimally control multiple controllable electrical loads in a low-voltage distribution 237

grid, a corresponding OPF optimization problem can be formulated and solved. As 238

described in subsection 3.1, these OPF problems are constrained, non-linear and non- 239

convex, and thus generally hard to solve. If integer or binary variables are involved (which 240

might be the case for realisitic modeling of components like heat pumps) the time for 241

classical solvers to converge rises exponentially with the number of binary variables [2]. 242

Besides this, classical solvers cannot guarantee to find the global optimum of non-convex 243

problems [12]. Metaheuristic solvers also cannot guarantee to find the global optimum 244

of such problems. However, metaheuristics might converge faster than classical solvers. 245

So metaheuristics might be a viable alternative to classical solvers when it comes to large, 246

non-convex optimization problems including integer or binary variables. Figure 3 shows 247

the connection between the physical grid (including devices to be optimally coordinated), 248

the corresponding OPF formulation and the metaheuristic used to solve the OPF problem. 249

physical grid including
controllable devices

corresponding
OPF problem

population-based
metaheuristic

optimized
timeseries

Figure 3. Connection between physical grid, corresponding OPF formulation and the metaheuristic
solver.

In contrast to trajectory-based metaheuristics which only consider one solution per 250

Iteration (just like classical solvers) population-based metaheuristics consider multiple 251

solutions per iteration, where each solution equals one member of the population. So, for a 252
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population-based metaheuristic a population is initialized. Each member of this population 253

represents one possible solution to the considered OPF problem. So for an OPF problem 254

with n decision variables, one member x represents one point in an n dimensional search 255

space. So, each member can be thought of as a vector consisting of n elements, where each 256

element represents a concrete value for one of the n decision variables: x = (x1, x2, . . . , xn)
⊺. 257

To draw a connection to the grid, one might think of active/reactive output of controllable 258

generators (PG,i or QG,i), transformer tap settings (aT,i), node voltages (Vi) or line apparent 259

powers (Sij) for example, as depicted for a simple grid in figure 4. 260

V1, δ1

aT, ST

PG,0, QG,0

V2, δ2

V3, δ3

PG,1, QG,1

PG,2, QG,2

PG,3, QG,3

S1,2

S2,3

Figure 4. A simple example grid to show control variables (in red) and state variables (in blue) that
constitute a complete vector of decision variables. Typically, each member in a population-based
metaheuristic represents one vector of control variables.

Typically, control variables are used to make up the members of the population, such 261

that each member represents one vector of concrete values for those control variables 262

[13,14]. So, for the sample grid in figure 4 each member of the population consists of 263

concrete numerical values for each of the control variables, for example: 264

x = (PG,1, PG,2, PG,3, QG,1, QG,3, QG,3, aT).

Each of these members can be assigned a value of the objective function, evaluated at the 265

position of this member: f (x). 266

As an example serves the particle swarm optimization (PSO), first described by [15] in 267

1995. Based on the swarm behaviour of for example birds, the members of the population 268

“navigate through the topology of the objective function”. Each member updates its current 269

position xi,t based on its own best position xp
i,t found so far and the best position xg

t found 270

by the entire population so far. According to equation (18) the “velocity” vi,t of member i 271

at iteration t is updated: 272

vi,t+1 = ξvi,t + rand c1(x
p
i,t − xi,t) + rand c2(x

g
t − xi,t), (18)

where ξ, c1 and c2 are referred to as inertia, cognitive parameter and social parameter 273

respectively. These factors determine how much the members orient on their own best 274

solutions or the whole populations best solutions found so far. Thus, these parameters have 275

influence on convergence of the PSO and need to be tuned for proper performance. These 276

parameters are also referred to as hyper parameters. A stochastic element is introduced 277

with rand, which stands for a random number. Then the new position xi,t+1 of each member 278

is calculated according to equation (19): 279

xi,t+1 = xi,t + vi,t+1 (19)

This way, the members of the population explore the landscape of the objective 280

function. Depending on the hyper parameter settings the members of the population 281

may take different paths, which might lead to more exploration of their environment or 282
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exploitation of discovered optima. With help of the stochastic element, members may 283

also be able to leave local optima in case they get stuck. However, constraints are not yet 284

considered. So the optimization problem (which represents the physical grid, see figure 3) 285

cannot be solved satisfying all the constraints yet. Therefore, there are constraint handling 286

techniques. 287

3.3. Constraint Handling Techniques 288

As already stated in section 3.2, metaheuristics can only optimize unconstrained 289

optimization problems. However, many problems – including OPF – need constraints to 290

be modelled realistically. Therefore, constraint handling techniques (CHTs) are used to 291

account for constraints that get violated by proposed solutions. 292

3.3.1. Static Penalty Function 293

With help of a static penalty function the violation of constraints – introduced by 294

solutions proposed by the metaheuristic – can be integrated into the objective function. 295

This way, such solutions get penalized and less attractive [6]. For a constrained optimiza- 296

tion problem as shown in equation (1), the penalized objective F(x) can be written as 297

equation (20): 298

F(x) = f (x) + ∑
i∈I

(
λin

i max(0, gi(x))
)
+ ∑

j∈J

(
λ

eq
j |hj(x)|

)
, (20)

where λin
i and λ

eq
j are penalty factors for inequality and equality constraints, respectively. 299

These penalty factors determine how much constraint violations are penalized. The penalty 300

factors also need to be tuned to ensure good performance of the metaheuristic solver. In 301

general, constraints that are deemed more important are associated with a higher penalty 302

factor. The penalized objective F(x) is usually referred to as “fitness”. 303

3.3.2. Superiority of Feasible Solution 304

With the help of feasibility rules, as described in [16], infeasible solutions can be 305

excluded from the population. Here, a tournament selection operator is used, where two 306

solutions are compared at a time. The “winning” solution to be kept in the population is 307

determined as follows: 308

1. feasible solutions are always preferred to infeasible ones, 309

2. given two feasible solutions, the one with better objective value is preferred and 310

3. given two infeasible solutions, the one with less constraint violation is preferred. 311

4. Results of the Literature Review 312

Including all the relevant keywords in the query only lead to two articles in Scopus 313

and zero articles in IEEE Xplore. However, skipping the keyword “constraint handling 314

technique” already 100 articles were found in Scopus and 30 articles in IEEE Xplore. 315

However, some articles were listed in both Scopus and IEEE Xplore. Among those articles 316

the ones relevant have been scanned for the relevant criteria, as outlined in section 2. The 317

results are listed in tables 1 to 5. Each of the criteria mentioned in section 2 is devoted a 318

separate column in tables 1 to 5. Inside those tables, only abbreviations are used. Here is an 319

overview of the used abbreviations: 320

MH: The metaheuristic used to solve the OPF problem (as it is not the scope of this review 321

to give a comprehensive overview of metaheuristics, they are just mentioned for 322

the sake of completeness. A prependen (I) means an “improved” version of the 323

base algorithm – according to the authors of the respective article). The following 324

values might appear in tbis column: GWO: Gray Wolf Optimizer, HHO: Harris Hawk 325

Opimizer, MSA: Moth Swarm Algorithm, SSA: Salp Swarm Algorithm, MRF: Manta 326

Ray Foraging Algorithm, SGA: Search Group Algorithm, JAYA: Jaya Algorithm, GA: 327

Genetic Algorithm, SGO: Social Group Optimization, TSO: Transient Search Opti- 328
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mization, GMO: Geometric Mean Optimization, FFO: Firefly Optimization, TFW: 329

Turbulent Flow of Water Optimization, ACO: Ant Colony Optimization, DE: Differen- 330

tial Evolution, CO: Coati Optimization, WSO: War Strategy Optimization, FHO: Fire 331

Hawk Optimization, FPA: Flower Pollination Algorithm, SOA: Skill Optimization 332

Algorithm, PSO: Particle Swarm optimiation, ABC: Artificial Bee Colony Optimiza- 333

tion, MGO: Mountain Gazelle Optimizer, GBE: Gradient Bald Eagle Search, BSA: 334

Bird Swarm Algorithm, HSA: Harmony Search Algorithm, GSA: Gravitational Search 335

Algorithm, WHA: Wild Horse Optimization, SFS: Stochastic Fractal Search, MFA: 336

Moth Flame Algorithm, MVO: Multi-Verse Optimization, WOA: Whale Optimiza- 337

tion Algorithm, SBB: Satin Bowerbird Optimization, ALO: Ant-lion Optimizer, KHA: 338

Krill Herd Algorithm, AO: Aquila Optimizer, SMO: Slime Mould Optimizer, CO: 339

Coyote Optimization, GHO: Grasshopper Optimization, POA Peafowl Optimization, 340

HGS: Hunger Games Search, AHB: Artificial Hummingbird Optimization, ISA: Inte- 341

rior Search Algorithm, EO: Equilibrium Optimizer, VND: Variable Neighbourhood 342

Descent Algorithm, SFL: Shuffled Frog leaping Optimization, TSA: Tree Seed Opti- 343

mization, SOS: Symbiotic Organisms Search Algorithm, GNDO: Generalized Normal 344

Distribution Optimizer, COO: Coot Optimizer. 345

CHT: The used constraint handling technique to ensure constraints are taken into account 346

when solving the OPF problem with a metaheuristic solver. The following values 347

might appear in this column: SPF: static penalty function, SFS: superiority of feasible 348

solution, LPIM: linear penalty incremental method, ACC: archive-based constraint 349

correction, SAP: self adaptive penalty, ROP: robust oracle penalty, N!: not even 350

mentioned. 351

HPT: Hyper parameter tuning to ensure good convergence of the meat heuristic when 352

solving the OPF problem. The following values might appear in this column: SV: at 353

least static values are given, TE: trial and error, N!: not even mentioned. 354

ObjOPF: The objective of the OPF problem. The following values might appear in this 355

column: MFC: minimize fuel costs, MFC*: minimize fuel costs (considering valve 356

point effect), MIO: minimize invest and operational costs, MOC: minimize opera- 357

tional costs, MIC: minimize investment costs, MVD: minimize voltage deviation, 358

MPL: minimize active power losses, MPL*: minimize reactive power losses, VSI: 359

maximize voltage stability index, ME: minimize emissions, MES: minimize energy 360

not served. MCC: minimize congestion costs, MPP: maximize PV penetration, TLL: 361

maximize total loadability limit, MCP: minimize costs for changing power output, 362

MSR: minimize system risk, MPI: minimize power import. 363

CVM: Whether constraint violations are monitored; for example node voltages or trans- 364

former load. The following values might appear in this column: NV: node voltages, 365

N!: not even considered. 366

MTC: Whether multiple time steps are considered for the formulation of the OPF problem. 367

The following values might appear in this column: DHR: one day in hourly resolution, 368

YHR: one year in hourly resolution, N!: not considered. 369

CLC: Whether controllable loads are considered in the OPF problem formulation (as 370

opposed to just controllable thermal generators). The following values might appear 371

in this column: EV: electric vehicles, Alu: Aluminium plant, N!: not considered. 372

FRC: Whether fluctuating renewables are considered in the OPF problem formulation. The 373

following values might appear in this column: PV: photovoltaic, WE: wind energy, 374

HE: hydro energy, BG: Bio gas, N!: not considered. 375

CGr: The grid considered in the study. The following values might appear in this column: 376

ERG: existing real-world grid, TGr: test grid (like for example IEEE xxx-bus grids). 377

GVL: The voltage level of the considered grid. The following values might appear in this 378

column: HMV: high to medium-voltage (e. g. everything above low-voltage), LV: 379

low-voltage. 380
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CRC: Whether the results of solving the OPF problem were compared when using different 381

constraint handling techniques (yes or no). 382

FLF: How the load flow is formulated. The following values might appear in this column: 383

FB: forward-backward-sweep, PF: complete power flow, N!: not even mentioned. 384
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Table 1. Results of reviewing literature for relevant criteria (MH: metaheuristic, CHT: constraint
handling technique, HPT: hyper parameter tuning, ObjOPF: objective of optimal power flow, CVM:
constraint violations monitored, MTC: multiple time steps considered, CLC: controllable loads
considered, FRC: fluctuating renewables considered, CGr: considered grid, GVL: grid voltage level,
CRC: comparison of results for different CHTs, FLF: formulation of load flow)

Ref. MH CHT HPT ObjOPF CVM MTC CLC FRC CGr GVL CRC FLF

[17] GWO SPF N!

MPL,
MFC,
VSI,

MVD

N! N! N! N! TGr HMV No PF

[18] MA,
AO N! N!

MFC,
MPL,
ME,
VSI,

MOC

N! N! N! WE TGr HMV No PF

[19] GWO SPF N!
MFC*,
MOC,

ME
NV N! N! PV, WE TGr HMV No PF

[20] (I)HHO SPF N! MFC* NV N! N! N! TGr HMV No PF

[21] (I)GWO LPIM,
ACC SV

MFC,
VSI,

MPL,
MVD,

ME

N! N! N! N! TGr HMV No N!

[22] (I)MSA SPF N!
MFC,
MVD,
VSI

N! N! N! N! TGr HMV No PF

[23] (I)SSA SPF N!
MPL,
MVD,
VSI

N! N! N! N! TGr HMV No PF

[24] (I)MRF N! SV MCC NV N! N! N! TGr HMV No PF

[25] (I)SGA SPF N!
MPL,
VSI,

MVD
NV N! N! N! TGr HMV No N!

[26] JAYA SPF N! MPL N! N! N! WE TGr HMV No PF

[27] GA SPF N! MIO N! DHR N! PV, WE ERG LV No PF

[28] (I)SGO SPF SV

MFC*,
VSI,

MPL,
MVD

N! DHR EV N! TGr HMV No PF

[29] TSO N! SV MOC N! DHR EV PV, WE TGr HMV No PF

[30] GMO N! N!
VSI,

MPL,
MVD

NV N! N! N! TGr HMV No N!

[31] FFO N! SV MPL,
MES NV YHR N! WE TGr HMV No PF

[32] TFW N! SV MFC*,
ME N! N! N! N! N! N! No N!

[33] (I)ACO ROP N! MPI N! DMIN EV PV ERG LV No PF

[34] DE SFS,
SAP SV

MFC,
MFC*,
VSI,

MPL,
ME

NV N! N! N! TGr HMV Yes PF
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Table 2. Results of reviewing literature for relevant criteria; continuation of table 1 (MH: metaheuristic,
CHT: constraint handling technique, HPT: hyper parameter tuning, ObjOPF: objective of optimal
power flow, CVM: constraint violations monitored, MTC: multiple time steps considered, CLC:
controllable loads considered, FRC: fluctuating renewables considered, CGr: considered grid, GVL:
grid voltage level, CRC: comparison of results for different CHTs, FLF: formulation of load flow)

Ref. MH CHT HPT ObjOPF CVM MTC CLC FRC CGr GVL CRC FLF

[35] MSA SPF SV

MFC,
MFC*,
MPL,
VSI,

MVD

NV N! N! N! TGr HMV No PF

[36] CO,
WSO N! N!

MFC,
MFC*,
MVD

NV N! N! WE TGr HMV No N!

[37] FHO N! N!
MFC,
MVD,
MPL

NV N! N! PV, WE TGr HMV No N!

[38] (I)FPA SFS N!

MFC*,
MPL,
ME,

MVD

NV N! N! PV, WE TGr HMV No PF

[39] GWO,
HHO N! N!

MFC,
ME,

MPL,
MVD

NV N! N! N! TGr HMV No PF

[40] SOA N! N! MFC NV N! N! N! TGr HMV No N!

[41]
PSO,
ABC,
DE

SPF N! MPP,
MVD NV N! N! PV TGr HMV No PF

[42] (I)ACO SPF N! MFC N! N! N! N! TGr HMV No N!

[43] GWO,
FPA N! SV TLL NV N! N! N! TGr HMV No PF

[44] MGO N! N!
MFC,
MPL,
MVD

N! N! N! N! TGr HMV No PF

[45] (I)HHO SPF SV

MFC,
ME,

MPL,
MVD

N! N! N! N! TGr HMV No PF

[46] ACO N! SV MPL,
MVD NV N! N! N! TGr HMV No N!

[47] GBE N! SV

MFC,
MFC*,
MRC,
MIO

NV N! EV WE,
PV TGr HMV No PF

[48] BSA,
JAYA N! N!

MFC,
MFC*,

ME,
MPL,
MVD

NV N! N! N! TGr HMV No PF

[49] (I)GA,
HSA N! N! MPL,

TLL NV DHR N! N! TGr HMV No PF
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Table 3. Results of reviewing literature for relevant criteria; continuation of table 2 (MH: metaheuristic,
CHT: constraint handling technique, HPT: hyper parameter tuning, ObjOPF: objective of optimal
power flow, CVM: constraint violations monitored, MTC: multiple time steps considered, CLC:
controllable loads considered, FRC: fluctuating renewables considered, CGr: considered grid, GVL:
grid voltage level, CRC: comparison of results for different CHTs, FLF: formulation of load flow)

Ref. MH CHT HPT ObjOPF CVM MTC CLC FRC CGr GVL CRC FLF

[50] JAYA SPF N!
MFC,
MPL,
VSI

N! N! N! N! TGr HMV No PF

[51] FPA N! N! MPL,
MIC NV N! N! N! TGr HMV No FB

[52] (I)GSA SPF N!
MFC,
MPL,
MVD

NV N! N! WE,
PV TGr HMV No PF

[53] (I)WHA N! SV MPL NV N! N! N! TGr HMV No FB, PF
(?!)

[14] FFA SPF N! MCP NV N! N! N! TGr HMV No PF

[54] (I)HHO SPF SV
MFC,
ME,
MPL

N! N! N! N! TGr HMV No PF

[55] SFS SPF N!
MPL,
MVD,
VSI

N! N! N! N! TGr HMV No PF

[56]

(I)GWO,
MFA,
SSA,

MVO

N! N!
MIO,
MPL,
ME

NV N! N! WE,
PV, HE TGr HMV No N!

[57] WOA N! N! MIC,
MPL N! N! N! N! TGr HMV No PF

[58] (I)GWO SPF N! MFC,
MFC* NV N! N! N! TGr HMV No PF

[13] (I)GWO N! N! MPL,
MIO NV N! N! N! TGr HMV No PF

[59] SBB SPF SV MCC NV N! N! N! TGr HMV No PF

[60] FPA N! N! MPL,
MVD NV N! N! N! TGr HMV No FB

[61] (I)FFO SPF N!

MFC,
MVD,
VSI,

MPL,
MPL*

NV N! N! N! TGr HMV No PF

[62] ALO SPF SV

MFC,
MVD,
VSI,

MPL,
MPL*

NV N! N! N! TGr HMV No PF

[63] MRF N! N!
MPL,
MVD,
VSI

NV N! N! N! TGr HMV No FB

[64] KHA N! N!
MFC*,
MPL,
ME

N! N! N! WE TGr HMV No PF
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Table 4. Results of reviewing literature for relevant criteria; continuation of table 3 (MH: metaheuristic,
CHT: constraint handling technique, HPT: hyper parameter tuning, ObjOPF: objective of optimal
power flow, CVM: constraint violations monitored, MTC: multiple time steps considered, CLC:
controllable loads considered, FRC: fluctuating renewables considered, CGr: considered grid, GVL:
grid voltage level, CRC: comparison of results for different CHTs, FLF: formulation of load flow)

Ref. MH CHT HPT ObjOPF CVM MTC CLC FRC CGr GVL CRC FLF

[65] ABC,
MFO N! N! MSR,

MIO NV DHR N! WE,
HE TGr HMV No PF

[66] AO N! SV MOC N! N! N! WE TGr HMV No PF

[67] (I)DE N! SV, TE

MFC,
MVD,
VSI,
MPL

NV N! N! WE,
PV TGr HMV No PF

[68] SMO SFS N! MOC,
ME NV N! N! PV, WE TGr HMV No PF

[69] (I)CO SPF N! MFC*,
MPL NV N! N! PV TGr HMV No PF

[70]
MVO,
GHO,
HHO

SPF N!
MFC,
MPL,
MVD

NV N! N! N! TGr HMV No PF

[71] POA SPF N!

MFC,
MPL,
MVD,

ME

NV N! N! N! TGr HMV No PF

[72] HGS N! N!

MFC,
MPL,
ME,

MVD,
VSI

NV N! N! N! TGr HMV No PF

[73]
ALO,
MFO,
SSO

N! SV MIC,
TLL N! N! N! N! TGr HMV No N!

[74] (I)AHB SPF SV

MVD,
MPL,
ME,

MFC

NV N! N! N! TGr HMV No PF

[75] MRF SPF SV, TE

MPL,
ME,

MFC,
MVD

NV N! N! WE,
PV TGr HMV No PF

[76] WOA,
GA N! N! MFC NV N! N! N! TGr HMV No PF

[77] ISA SPF SV
MFC,
MFC*,
MVD

NV N! N! N! TGr HMV No PF

[78] EO SPF SV MPP N! DHR N! PV TGr HMV No N!
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Table 5. Results of reviewing literature for relevant criteria; continuation of table 4 (MH: metaheuristic,
CHT: constraint handling technique, HPT: hyper parameter tuning, ObjOPF: objective of optimal
power flow, CVM: constraint violations monitored, MTC: multiple time steps considered, CLC:
controllable loads considered, FRC: fluctuating renewables considered, CGr: considered grid, GVL:
grid voltage level, CRC: comparison of results for different CHTs, FLF: formulation of load flow)

Ref. MH CHT HPT ObjOPF CVM MTC CLC FRC CGr GVL CRC FLF

[79] (I)JAYA SPF N!

MFC,
ME,

MPL,
MVD

NV N! N! N! TGr HMV No N!

[80] VND SPF N! MFC NV N! N! N! TGr HMV No PF

[81] (I)PSO N! SV
MPL,
MOC,
MVD

NV N! N! N! TGr HMV No PF

[82] SFL,
TSA N! N!

MPL,
MVD,
VSI

NV N! N! N! TGr HMV No PF

[83] (I)ACO N! N! MFC NV N! N! N! TGr HMV No PF

[84] SOS N! N!

MFC,
MPL,
MVD,
VSI

NV N! N! N! TGr HMV No PF

[85] (I)GNDO SPF N!

MOC,
MVD,
VSI,
ME,
MPL

NV N! N! WE TGr HMV No PF

[86] (I)FPA N! N! MPL N! N! N!
PV,
WE,
BG

TGr HMV No FB

[87] COO SPF SV, TE
MPL,
ME,

MVD
N! N! Alu PV, HE TGr HMV No PF

4.1. Used Constraint Handling Techniques 385

Most of the reviewed articles use a static penalty function as shown in equation (20), to 386

integrate constraint violation into the objective function, then the resulting fitness function 387

is optimized. Only very few articles use different constraint handling techniques. Also, 388

many articles don’t even mention constraint handling techniques – even though they have 389

to be used in order to achieve feasible solutions to OPF problems. The results are shown in 390

figure 5. 391
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Figure 5. Results of literature review for used constraint handling techniques (SPF: static penalty
function, SFS: superiority of feasible solution, LPIM: linear penalty incremental method, ACC: archive-
based constraint correction, SAP: self adaptive penalty, ROP: robust oracle penalty, N!: not even
mentioned)

A typical example for an article using static penalty function for handling constraints 392

is [22]. Bounds of decision variables are formulated as inequality constraints. Violation of 393

those bounds are penalized via penalty factors and added on top of the original objective 394

function, as described by equation (20). 395

Only one article compares the results of optimization for different constraint handling 396

techniques: In [34] authors compare “superiority of feasible solution” and “self-adadptive 397

penalty” for handling constraints as well as an ensemble of both methods. Optimizations 398

are carried out on IEEE 30-, 57- and 118-bus systems with either single or also multiple 399

objectives like for example minimizing fuel costs, power losses or voltage deviations. A 400

differential evolution was used for solving the OPF problem, combined with different 401

CHTs. Statistical analyses of the objective function values are carried out using Wilcoxon 402

signed rank test. However, the results show that no single CHT is able to produce best 403

results for all considered cases. 404

Other CHTs like linear penalty incremental method (LPIM), archive-based constraint 405

correction (ACC), robust oracle penalty (ROP) were only used very seldomly. In [21] the 406

authors used LPIM and ACC as CHTs. Optimizations were carried out on IEEE 30- and 407

57-bus systems using a grey wolf optimizer based on symbiotic learning. Objectives of 408

the OPF formulation were, for example, minimization of fuel costs, emissions, power 409

losses or voltage deviation – either considered as single objectives or multiple objectives 410

via weighted sum. For constraint handling the authors use a combination of LPIM and 411

ACC, with LPIM as primary CHT. After a certain number of iterations ACC might be used 412

as secondary CHT, based on probability. In the LPIM, the penalty factors – as described 413

in equation (20) – are linearly increased with the number of iterations. Thus, in the first 414

iterations penalties are smaller, leading to more exploration, while at higher iterations 415

penalties are bigger, leading to more exploitation of found optima. In ACC an archive 416

stores solutions with the least constraint violations so far. In order for new solutions to 417

enter this archive, their constraint violation must be less than of those solutions stored in 418

the archive. 419

In [33] the authors use a robust oracle penalty for handling constraints. A micro 420

grid consisting of five nodes is considered for optimization. The objective of the OPF 421

formulation is to minimize power import from the main grid. The authors don’t expand on 422

the explanation of ROP, however, further information can be found in [88]: ROP is based 423

on only one parameter, the oracle. Ideally, this oracle is to be set slightly greater than the 424

optimal feasible solution – which of course is not known beforehand. Starting with an 425

initial guess, the oracle gets updated each iteration, moving closer to an optimum, thus 426

resulting in a kind of self-tuning effect. For further details, the reader is referred to [88]. 427
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4.2. Used Techniques for Hyper Parameter Tuning 428

Many of the reviewed articles don’t even mention how the hyper parameters for the 429

metaheuristic solver were set. The other articles at least showed what values they have 430

set for the hyper parameters of their used metaheuristic. Only three articles stated that 431

“optimal” values for hyper parameters were determined based on trial and error. The 432

results are shown in figure 6. 433
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Figure 6. Results of literature review for used hyper parameter tuning (SV: at least static values given,
TE: trial and error, N!: not even mentioned)

In [67] an IEEE 30-bus grid is considered for optimization. The objectives of the OPF are 434

to simultaneously minimize fuel costs and power losses in transmission lines. For solving 435

the OPF problem the authors use a hybrid of differential evolution and symbiotic organisms 436

search. The authors state that the optimal hyper parameter settings were obtained “[a]fter 437

several trial runs of the algorithm”. 438

In [75] IEEE 30- and 118-bus systems are considered for optimization. Here, the objec- 439

tives of the OPf formulation include minimizing fule costs, emissions, voltage deviation 440

and power losses in transmission lines. A manta ray foraging optimization is used to solve 441

the OPF problem. According to the authors “[t]he best solution (optimal values) for each 442

parameter was chosen”. The authors provide a table with a testing range for each hyper 443

parameter of different metaheuristics. However, it is not explained, how the best solution 444

was determined – probably also by trial and error in the given ranges. 445

4.3. Objectives of the Optimal Power Flow Formulation 446

Most of the reviewed articles consider minimization of power losses in transmission 447

lines, voltage deviation or fuel costs as objective. The results are shown in figure 7. In most 448

of the cases either single objectives or multiple objectives are considered. That is the reason 449

why the number of articles in figure 7 sum up to more than the total number of reviewed 450

articles. 451
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Figure 7. Results of literature review for used OPF objectives (MFC: minimize fule costs, MFC*:
minimize fuel costs (considering valve point effect), MIO: minimize invest and operational costs,
MOC: minimize operational costs, MIC: minimize investment costs, MVD: minimize voltage devi-
ation, MPL: minimize active power losses, MPL*: minimize reactive power losses, VSI: maximize
voltage stability index, ME: minimize emissions, MCC: minimize congestion costs, MPP: maximze
PV penetration, TLL: maximize total loadability limit)

In the case of multiple objectives, two options are possible. Either a weighted sum 452

of the single objectives, which leads to a scalar multi-objective function, as is done for 453

example in [39]. Or calculating a pareto front based on a vector-valued objective function, 454

as for example described in [18]. The mostly used objectives are to minimize power losses 455

in transmission lines, voltage deviation or fuel costs for thermal generators. But also 456

sometimes objectives like minimizing congestion costs or increasing total loadability limit 457

are included in OPF formulations. Most of the times these objectives are achieved by 458

corresponding coordination of controllable thermal units. But also sometimes for example 459

placement or sizing of flexible AC transmission systems (FACTS) devices is used to achieve 460

those objectives or distributed generation is considered. 461

In [35] different objectives like minimizing fule costs, power losses in transmission 462

lines, voltage deviations and emissions or maximizing voltage stability index are considered. 463

The authors consider different cases, either single objectives or multiple objectives as a 464

weighted sum. This way up to four objectives are considered simultaneously. Optimizations 465

are carried out on IEEE 30-, 57- and 18-bus systems using moth swarm algorithm as solver. 466

The objectives are achieved using controllable thermal generators. 467

In [61] the authors consider different objectives like minimizing fuel costs, voltage 468

deviation, active and reactive power losses in transmission lines or maximizing voltage 469

stability index. However, here only one objective at a time is considered. Optimizations are 470

carried out for an IEEE 30-bus grid. A hybrid firefly particle swarm optimization is used to 471

solve the OPF problem. Here, also controllable thermal generators are used to achieve the 472

objectives. 473

In [49] the objectives of the OPF formulation are to minimize power losses in transmis- 474

sion lines and to maximize total loadability limit of the grid. Both objectives are considered 475

simultaneously using a pareto front. The Optimizations are carried out on an IEEE 30- 476

bus grid. The authors use a genetic and a harmony search algorithm. The objectives are 477

achieved by optimal placement and sizing of FACTS devices. 478

Similarly, in [57] the optimal placement and sizing of FACTS devices is used to achieve 479

certain objectives. Here, this objective is to minimize investment and operating costs 480

for those FACTs devices. In a first step, the optimal placement of those FACTS devices 481

is manually determined. In a next step, the optimal sizing of those FACTS devices is 482

determined using whale optimization. Here, IEEE 14- and 30-bus systems are considered 483

for the optimization. 484

In [50] the objectives of the OPF formulation are to minimize fuel costs, power losses 485

in transmission lines and maximizing voltage stability index. The objectives are considered 486
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one at a time. Here, IEEE 30- and 118-bus grids are considered for the optimization. To 487

solve the OPF problem, the authors use the Jaya algorithm. Using statistical analyses, also 488

the effect of distributed generation on the performance of the solver is considered. 489

It is already noticeable here that none of the articles examined pursues the goal 490

described in the introduction (to enable the coordination of as many controllable loads as 491

possible, such as electric heat pumps and charging stations in existing low-voltage grids) 492

4.4. Methods for Formulating the Load Flow 493

Besides the different objectives for the OPF problem, as mentioned in section 4.3, 494

there are also differences in the way how the load flow is incorporated into the OPF 495

formulation. However, there are only two different approaches in the reviewed literature: 496

1.) for radial non-meshed grids a forward-backward sweep according to equations (5)–(7) can 497

be employed or 2.) for arbitrary (also meshed) grids a “complete” power flow formulation 498

according to equations (3) and (4) can be employed. Finally, both formulations yield the 499

state variables in dependence of the control variables. The results of the literature review 500

are shown in figure 8 501
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Figure 8. Results of literature review for methods to formulate the load flow (FB: forward-backward-
sweep, PF: full power flow, N!: not even mentioned).

Articles like [63] or [60] use the forward-backward-sweep because they only consider 502

radial, non-meshed grids. In those grids, solving the forward-backward-sweep iterations 503

converges faster than solving Gauss-Seidel or Newton-Raphson for the corresponding 504

full power flow formulation. Most other articles that consider meshed grids, have to 505

use the full power flow formulation, because meshed grids cannot be formulated using 506

forward-backward-sweep. 507

However, there are also some articles that don’t even mention how load flow is 508

formulated, like for example [30] or [42]. Such papers just formulate balances for active and 509

reactive powers, but don’t describe how this effects the load flow (there is no connection 510

between control and state variables). Also one article [53] describes both approaches and it 511

is not obvious which one is used (probably forward-backward-sweep because of the radial 512

grid). 513

4.5. Consideration of Controllable Loads 514

Most of the reviewed articles consider the optimization of controllable, thermal gener- 515

ators. Only in four articles electric vehicles were considered – however, not as controllable 516

load. But just as additional load that has to be supplied. Only one article deviates from 517

this pattern. All those articles have in common that demand for EV charging is determined 518

by probability distribution functions. In [28] additional EV charging in IEEE 30 bus and 519

IEEE 57 bus networks are considered. A certain penetration of EVs (and also PHEVs) with 520

battery capacities and initial SOCs are assumed according to normal distributions. This 521

results in an additional power demand added on top of residential load profiles. The 522

OPF problem with objectives like minimization of fuel costs, voltage deviations, power 523
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losses and maximization of voltage stabiliy index is solved with an improved social group 524

optimization. Since charging profiles are fixed in advance according to probability density 525

functions, EV charging cannot be optimized anymore. Therefore, the work does not allow 526

a coordination of EVs in the sense of controllable loads. 527

In [29] additional EV charging as well as fluctuating production of renewables is 528

considered in an islanded AC-DC hybrid microgrid based on an IEEE 33-bus test grid. 529

Production of renewables as well as demand for charging EVs are based on according 530

probability distribution functions. Using monte-carlo simulations and a fast forward 531

scenario reduction technique additional loads and charging demands are projected over 24 532

hours for multiple scenarios. The optimization with the objective of minimizing operational 533

costs is carried out using a transient search optimization. Since charging profiles for EVs 534

are calculated beforehand using probability density functions, for the optimization those 535

charging profiles are just fixed parameters and cannot be optimized. Thus, the work in this 536

article does not allow a coordination of EVs in the sense of controllable loads. 537

In [47] EV charging and also vehicle to grid (V2G) together with fluctuating wind and 538

PV production are considered in an IEEE 30-bus grid. Again, renewables production and 539

EV load profiles are determined beforehand the optimization according to given probability 540

density functions obtained after multiple monte-carlo simulations. The objectives of the 541

OPF formulation are to minimize power losses on transmission lines, voltage deviations, 542

and total operation costs. A gradient bald eagle optimization is used for solving the OPF 543

problem. Since the charging pattern for the EV is already predefined according to a given 544

probability distribution, the EV charging cannot be optimized. Thus, also this work does 545

not allow a coordination of EVs as controllable loads. 546

In [33] EV charging in a 5-bus microgrid is considered. There are also fluctuating PV 547

production and other components like a storage in this micro grid. The goal of optimization 548

is to minimize the energy import from the main grid. For this purpose a storage and 549

charging EVs are utilized. Time slots when cars are available as well as starting and desired 550

finish SOCs are randomly generated based on normal distributions. As a results, EVs 551

and the storage are charged in such a way that the energy imported from the main grid 552

is minimized. In this sense this article is unique in the fact that it tries to utilize EVs as 553

controllable load – instead of just considering predefined load profiles for EVs. 554

In [87] the operation of aluminium plants is considered as controllable load. The grid 555

under consideration is an IEEE 57-bus grid. There are also renewable sources like PV 556

and hydro energy feeding into the grid. The goal of optimization is to minimize carbon 557

emissions, power losses and voltage deviation. The aluminium plants can adapt their 558

power factor in order to consume more or less reactive power, thus affecting voltage levels. 559

However, it is not apparent how exactly this is integrated into the OPF formulation. Still, 560

this is considered as controllable loads. So this paper in unique in the fact that it tries to 561

optimize power factor of controllable loads in order to achieve the optimization goals. 562

4.6. Consideration of Fluctuating Generation of Renewables 563

Most of the reviewed articles only consider generation of thermal generators. How- 564

ever, some articles also include fluctuating generation of renewables like photovoltaic, 565

wind energy or hydro energy. The results are shown in figure 9. Typically, wind turbine 566

and photovoltaic generations are modelled according to specific probability distribution 567

functions. 568



Version February 25, 2025 submitted to Electricity 22

PV WE HE BG N!
0

20

40

17
20

3 1

48

N
um

be
r

of
ar

ti
cl

es

Figure 9. Results of literature review for considered renewables (PV: photovoltaic, WE: wind energy,
HE: hydro energy, BG: bio gas, N!: not considered)

In [18] stochastic wind energy generation in a IEEE 30-bus grid with two wind parks 569

is considered. The wind energy generation is modelled according to a Weibull distribution. 570

The parameters of the Weibull distribution are calculated are calculated using mayfly algo- 571

rithm and aquila optimizer. Based on the resulting probability distribution function an OPF 572

problem with multiple objectives like minimizing emissions of thermal generators or power 573

losses in transmission lines and total operation costs is formulated. The costs for wind 574

energy are divided in for over- and underestimating the actual wind energy generation. 575

The OPF problem is solved by the mayfly algorithm. As a result, fluctuating wind energy 576

generation is incorporated by means of according control of thermal generators. 577

In [41] the authors consider optimal placement and sizing of PV in IEEE 13- and 578

37-bus systems. For the PV generation a given load profile is used. The objective of the 579

OPF formulation is to minimize voltage deviation and maximize the PV penetration. The 580

authors use different metaheuristics like artificial bee colony, particle swarm optimization 581

or differential evolution to solve the OPF problem. As a result, renewable generation of PV 582

is incorporated by means of optimal placement of PV in the grid. 583

In [37] stochastic wind and PV generation in an IEEE 69-bus grid are considered. 584

Furthermore, a diesel generator and a micro turbine are included in the grid. Wind is 585

modelled according to a Weibull distribution and solar generation is modelled using a 586

normal probability density function. The objective of the OPF problem is to minimize 587

generation costs, power losses in transmission lines and voltage deviation. The authors 588

don’t describe closer how the costs for PV and wind production are calculated. The 589

locations of PV and wind turbine in the grid are are fixed. A fire hawk optimization is used 590

to solve the OPF problem. Wind and PV production are thus incorporated by adapting 591

other controllable loads. 592

4.7. Considered Grids and Voltage Levels 593

Most of the reviewed articles don’t consider real, existing grids, but rather test grids, 594

like for example IEEE xxx-bus (where xxx denotes the number of buses, there are many 595

different test grids with different numbers of buses). Many articles also consider multiple 596

such test grids with varying numbers of nodes, to show scalability of their considered 597

metaheuristic. Also, most articles don’t explicitly mention the voltage level. However, 598

those test grids are mostly used to simulate high-voltage grids. Only very few papers 599

consider for example real micro grids. 600

One example for an article with a micro grid is [27]: the authors consider a micro grid 601

consisting of 8 nodes. However, there is no further information on the voltage level. Here, 602

it is assumed this is a low-voltage grid. There is also no information whether this is a real 603

existing grid, the authors call it a “generalizable [micro grid]”. 604

In [29] the authors consider a hybrid AC-DC radial distribution grid based on an IEEE 605

30-bus test grid. 606
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[33] considers a real existing microgrid at the Wroclaw University in Poland. The 607

microgrid consists of 5 nodes, however, the authors don’t explicitly mention the voltage 608

level, but it is assumed that it is a low-voltage grid. 609

In [46] the authors consider an IEEE 30 bus test grid working at 12.6 kV 610

5. Discussion/Conclusion 611

Most of the reviewed articles focus on an optimal coordination of controllable, thermal 612

generators, given certain inflexible loads. Typical objectives of the OPF problem are 613

minimization of voltage deviation, power losses in transmission lines or fuel costs. The 614

results of such optimizations are settings for control variables, like generator active power 615

or transformer tap settings as well as state variables like node voltages or angles. However, 616

almost all OPF formulations in the reviewed literature only consider a single time step 617

problem. 618

Most of those articles compare the performance of their used metaheuristic solvers to 619

other benchmarks in the literature, thus developing efficient solvers. However, none of the 620

reviewed articles research the effect of hyper parameter tuning on the performance of the 621

metaheuristic solver. Often there are only fixed values given for hyper parameters, but not 622

how those values were determined. In fact, only three papers stated that “optimal” values 623

for hyper parameters were determined by trial and error. And only one article examines the 624

effects of different constraint handling techniques on the performance of the metaheuristic 625

solver. 626

A few of the reviewed articles also included fluctuating production of renewables like 627

PV, wind energy or hydro energy in their OPF formulations. The stochastic character of 628

renewable production is incorporated by using according probability density functions. 629

However, all articles consider either optimal placement of newly to be install renewables, 630

subject to typical objectives like minimizing operational costs or effects on grid operation 631

or integration of renewables by means of shifting thermal generation accordingly. None 632

of the reviewed articles consider how to include existing plants into operation of existing 633

low-voltage distribution grids. 634

Regarding the considered grid for optimization, almost all of the reviewed articles 635

exclusively focus on test grids like IEEE xxx-bus (where xxx stands for a concrete number 636

of buses). These are no real existing grids, but are mostly used to evaluate the performance 637

of algorithms used for solving OPF problems. Only two of the reviewed articles examine 638

a real existing grid. Regarding the voltage level of the considered grids, there is no clear 639

indication to be found. This is because it is customary to specify the voltages in p.u. 640

However, due to the structure (multiple branches, partly meshed) of the test grids, it is 641

assumed that those grids are operated in high to middle-voltage. It is therefore also not 642

clear whether the optimization techniques used in the articles reviewed can be directly 643

transferred to low-voltage grids. 644

Also, almost none of the reviewed articles consider controllable loads in low-voltage 645

distribution grids. Few articles consider electric vehicles, however, almost exclusively as 646

static loads added on top of residential load profiles. Only one article considers electric 647

vehicles as real controllable load – by including charging power as decision variables in 648

the OPF formulation. Also one article considers aluminium plants as controllable loads, 649

by means of adapting their power factor. Only a few other articles consider flexible AC 650

transmission system (FACTS) devices which might be considered as “controllable loads”. 651

However, loads like electric vehicles or electric heat pumps – with associated requirements 652

like departure time or SOC or heat demands to be covered – were never considered. There 653

exists literature like for example [89–91], that examine optimal coordination of controllable 654

loads, however such articles don’t consider the grid load. 655

For an optimal scheduling of controllable electric loads in low-voltage distribution 656

grids, accordingly extended OPF formulations must be investigated. These formulations 657

should include requirements associated with controllable loads: for example desired 658

departure time and SOC for charging electric vehicles or heat demands that need to 659
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be covered by electric heat pumps. But also fluctuating production of local renewable 660

generation like PV should be incorporated in such formulations. To allow a meaningful 661

coordination of controllable loads, the optimization problem also has to cover multiple 662

time steps. Thus, additional decision variables and constraints have to be added to the 663

optimization problem. For example constraints to ensure power balance for all time steps, 664

calculate SOCs of EVs or operating limits of other state variables and grid infrastructure. 665

However, such expanded OPF formulations also require more time for potential 666

solvers to converge to a solution. This is especially true for formulations that involve 667

integer or binary variables. A possible solution can be the usage of metaheuristic solvers – 668

as is already the current state of research. However, only few articles research the effect of 669

different constraint handling techniques or hyper parameter settings on the performance 670

of the metaheuristic solver. Also, there are no efforts in finding an automated way to 671

determine optimal hyper parameter settings. 672

Put all together, directions for future research could include: 673

• whether the reviewed optimization techniques (which were almost always applied in 674

high to middle-voltage grids) can also be applied in low-voltage grids as they are, 675

• extended OPF formulations (with according constraints) that also account for control- 676

lable loads and consider multiple time steps, 677

• statistical evaluation of the performance of metaheuristic solvers for different con- 678

straint handling techniques and settings of hyper parameters and 679

• research on automated – e. g. based on machine learning – methods to determine 680

optimal hyper parameters that maximize the performance of the metaheuristic solver. 681

Covering those research gaps might help to achieve an optimal coordination of multiple, 682

controllable loads in low-voltage distribution grids – in a manner so that all requirements 683

of those loads are considered and also a safe operation of the grid is ensured. 684
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