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Abstract I

Abstract

Abstract

Traditional grid state estimation in low voltage grids is performed centralized by

Distribution System Operators. In order to increase the robustness of the power

systems and user autonomy, this paper proposes a Swarm Grid based approach for

state estimation. Data is optionally prepared by exchanging values between current

and voltage vector, described as exchange operator using Principal Pivot Transform. A

combination of weighted, constrained and bounded least squares algorithm is proposed

as state estimation algorithm. Additionally, worst-case assumptions are presented

which help to achieve reasonable estimates of the unknown grid voltages and currents

used for the decentralized grid control.
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2 State estimation 1

1 Swarm Grid

A swarm grid consists of multiple nodes within a distribution network that together decide

on which actions to take in order to guarantee a stable and safe operation of the distri-

bution power grid. In such a swarm, all members are equal, gather information through

measurements and communicate with each other. Also, nodes can request other nodes to

complete actions that bene�t them and the swarm grid in general.

Centralized state estimation is prone to failure in case of an outage of the Distribution

System Operator (DSO) or the network towards the DSO. In such a case, regulation of

controllable loads can no longer be performed by the DSO and the power grid may enter

a critical state. In a swarm grid, on the other side, all nodes can individually perform a

state estimation and perform control actions even in case of network failures.

For such a swarm grid to be functional, as many nodes within the distribution system as

possible must be integrated. Therefore, a shared communication and decision protocol is

required. However, suggestions for such a protocol are out of scope for this paper.

2 State estimation

2.1 Fundamentals

An overview of existing distribution system state estimation (DSSE) approaches is given

in [1]. All approaches have in common that the calculation is performed by the DSO who

then decides on which actions to take to ensure a stable operation. In this paper, per-

forming DSSE on distributed nodes is proposed. Because of that, the availability of data

greatly di�ers. While in centralized DSSE measurements from Smart Meters are available

to the DSO, data protection laws inhibit the ability to share user speci�c data especially in

countries with strict data protection laws such as Germany. Furthermore, our application

for grid control requires that the worst case for the grid state must be covered. This is

di�erent from applications, which analyze the system state for purposes such as fault local-

ization or loss monitoring. [1] Multiple algorithms exist for DSSE that can be categorized

into two categories, Model-based algorithms and data-driven algorithms. Model-based al-

gorithms require prior knowledge of the distribution network, such as network topology

and impedances. Here, a state vector is built with either node voltages, branch currents

or power. Notably, one vector needs to be complete in order for model-based algorithms

to work. Therefore, if no measurement value is available for a node or branch, replace-

ment values have to be used instead [2]. Model-based algorithms include Weighted Least

Squares (WLS), Least Absolute Value (LAV), Weighted Least Absolute Value (WLAV),

Least Trimmed Squares (LTS), Least Median Squares (LMS) and Generalized Maximum-

likelihood (GM). Residuals are de�ned as in equation 1 where x is the state vector, h(x)

is a nonlinear function and z is the measurement vector [1] [3].

r = z − h(x) (1)
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Model-based algorithms with a short description and their respective objective (minimiza-

tion) functions can be found in table 1. The second category of DSSE algorithms is

Algorithm Description Objective Function

WLS minimize weighted squared residu-
als

rTWr

LAV minimize sum of absolute values
m∑
i=1

|ri|

WLAV same as LAV with weights
m∑
i=1

wi|ri|

LTS minimize the j smallest squared
residuals

j∑
i=1

ri
2

LMS minimize median instead of sum median(rTWr)

GM minimize Huber cost function (η) of
normalized residuals (rSi)

m∑
i=1

wi
2η(rSi)

Table 1 Model-based algorithms and their objective functions (in all cases minimization); W is
the weight matrix (dependent on measurement errors); adapted from [1]

data-driven algorithms which themselves can be divided into four categories [4].

� Supervised learning uses labeled datasets to derive unknown values

� Unsupervised learning groups information based on similarity in unlabeled data

� Reinforcement learning is a technique where good performance of a model is re-

warded. Thus, positive traits are reinforced

� Ensemble Methods that combine multiple Machine Learning (ML) algorithms to en-

hance performance

The authors of [4] reviewed machine learning methods found in other publications and their

applications. For short-term forecasting of energy consumption the following methods were

identi�ed.

� Kalman �lter

� AutoRegressive-Moving Average (ARMA)

� Long Short Term Memory Recurrent Neural Network (LSTM-RNN)

� Support Vector Machine

� Random Forests

� Extreme Learning Machine (ELM)

� Multiple Linear Regression (MLP)

While all methods above used consumption measurements collected from smart metering

devices, ELM and MLP additionally used meteorological data. Kalman-based �lters track

changes to the system state over time. Using past measurements, estimates of unknown

variables are derived or if new measurements are available a weighted average of past and
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new measurements is calculated. Some authors categorize Kalman-based �lters as a third

category of DSSE �forecasting-aided algorithms [1]. However, since past data is used and

constantly updated with freshly available measurement data to derive unknown values

others classify it as an online machine learning algorithm [4].

2.2 Replacement Values

Existing model-based algorithms require a positive measurement value redundancy at each

node and for the whole low voltage network [2]. However, in reality, it is expected that

the number of unknown values is signi�cantly higher than amount of available measure-

ments. As a solution, unknown values can be replaced by replacement values. There exist

two types of replacement values, virtual measurements and pseudo measurements. Virtual

measurements are those that for simulation purposes show no measurement error such as

current values for nodes without energy consumption or production, often called Zero In-

jection Busses (ZIB) [5]. Pseudo measurements can be generated through statistical and

probabilistic algorithms such as Gaussian Mixture Models or Expectation Maximization,

through learning based algorithms such as deep neural networks (DNN) or Parallel Dis-

tribution Processing (PDP) based on historical data [1]. Here, for pseudo measurements

node currents are set to zero. This is the worst case for the interconnecting lines and thus

relevant for our application. If there is an excess of unknown values, one has to select,

whether a value is put into the batch of those, that will be calculated from the measure-

ments, or whether it will be set to a pseudo or virtual measurement value. Even if the

process of selection is often clear to a skilled user, it is not always straightforward for an

automated process. It will be described in chapter 3.

2.3 Di�erent Measurement Types

In traditional supervisory control and data acquisition (SCADA) systems, data is obtained

through remote telemetry units (RTUs) with measurements taken non-synchronized. Re-

cently, phasor data concentrators (PDCs) are used to aggregate synchronized measure-

ments from phasor measurement units (PMUs) that are also sampled at a higher rate

than conventional measurements. Using both types of measurements poses the problem of

time skewness where sampling rates di�er and measurements are taken at di�erent time

instances. In order to accurately capture the system state, measurements need to be syn-

chronized through GPS or time servers. [6] models the uncertainty of the delayed time as

probability density function and then uses augmented state Kalman �lter to solve the prob-

lem of delayed measurements. For this work, measurements were only taken synchronized

in a simulation environment.

2.4 Notation and preliminaries

Nodes will be referred to as measurement busses, if � at that node � measurements are

taken, as estimation busses if its values are calculated and lastly as zero injection busses

if virtual measurements are applied. The grid topology is assumed to be known either

through manual input or through topology estimation. Thus, also the admittance matrix
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is available. Further, the grid topology contains information about whether a node is

capable of feeding into the network. In a �rst iteration, only radial networks are considered.

However, the algorithm can also be applied to meshed networks. For simulation purposes,

grid topologies were generated in form of binary trees with restrictions that measurement

busses may only be at the end of a line and estimation busses only at the end of a line or

immediately before measurement busses. This shall represent public and private electric

vehicle charging stations, and households. Finally, the phase shift at a slack node is

assumed to be known (typically zero).

2.5 Algorithm

In the proposed algorithm of this paper, a combination of node voltages and branch cur-

rents can be used as the state vector. With only a limited number of known values, the

voltage and current vectors each are incomplete. A model-based approach is used for

DSSE. Equation 2 shows the matrix form of Ohm's Law for a single phase, symmetrical

system, where I⃗ are all node currents, U⃗ are the node voltages and A is the admittance

matrix.

U⃗ ·A = I⃗ (2)

In our case, however, not all node voltages are known, and some node currents are already

known. To solve this problem, rows can be extracted from equation 2 resulting in equation

3 where γ, β are those row indices of known values in U⃗ , I⃗ and ⃗̄γ, ⃗̄β row indices of unknown

values in U⃗ , I⃗ respectively.

A[β, γ] · U⃗ [γ]− I⃗[β] = −A[β, γ̄] · U⃗ [γ̄] (3)

This results in a linear equation system with only known values on the left and part of the

admittance matrix and all unknown values in U⃗ on the right. Using WLS the unknown

values in U⃗ can be determined with weights assigned according to measurement accuracies.

2.5.1 Transformation using Principal Pivot Transform

A di�erent approach for calculating unknown values in U⃗ was evaluated during work on

this paper. Here, for those rows with existing current measurement values β and non-

existent voltage values γ̄ elements are exchanged between U⃗ and I⃗ resulting in two new

vectors X⃗ and Y⃗ . This process also known as exchange operator requires transforming the

matrix using Principal Pivot Transform (PPT) as shown in equation 4.

Y⃗ · ppt(A,α) = X⃗ (4)

Here, the indices of exchange are noted in α and those that have not been changed are by

de�nition noted in ᾱ. Using these indices, four submatrices A[α], A[α, ᾱ], A[ᾱ, α] and A[ᾱ]

can be extracted from A, where the �rst parameter is row index and the second parameter

column index. If only one parameter is given, row and column index values are identical.

The PPT of matrix A with exchange indices α is de�ned in equation 6 with the Schur
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complement de�ned in equation 5 [7].

Aschur = A[ᾱ]−A[ᾱ, α] ·A[α]−1 ·A[α, ᾱ] (5)

ppt(A,α) =

[
A[α]−1 −A[α]−1 ·A[α, ᾱ]

A[ᾱ, α] ·A[α]−1 Aschur

]
(6)

As can be seen, PPT requires inversion of the sub-matrix A[α] and thus no linear depen-

dence in this sub-matrix. However, singularity in A[α] is unlikely since the sub-matrix

contains the self-admittances on its diagonal.

In case of singularity, using a Moore Penrose Inverse is applicable under certain conditions

described in equation 7 and 8 as described in [8] where N(A) is the nullspace of A and A∗

is the complex conjugate of A.

N(A[α]) ⊆ N(A[ᾱ, α]) (7)

N(A∗[α]) ⊆ N(A∗[α, ᾱ]) (8)

[9] �nds a more generalized requirement for applicability of the exchange operator shown

in equation 9 where R(A) denotes the range space of A.

R(A[α, ᾱ]) ⊆ R(A[α]) (9)

If a pseudo-inverse is used the algorithm is referred to as Generalized Principal Pivot

Transform (GPPT).

Then, the matrix can be transformed similar to equation 3 resulting in an equation system

with fewer unknowns and fewer equations than in the �rst approach. However, in both

approaches all measurement values are used and after applying WLS both result in similar

results for the voltage vector.

Nevertheless, due to the di�erent resulting shape of the matrix when applying PPT, a

minimization for overdetermined systems can be used instead of the WLS algorithm. This

approach uses QR Decomposition of the matrix that results from equation 3 after applying

PPT. In QR Decomposition square matrices or rectangular matrices (A) of shape m × n

with m ≥ n can be decomposed such that A = QR. Hereby, in addition to weights,

boundaries and constraints can be factored in. A comparison of both approaches requires

standardized scenarios. However, due to complexity this is out of scope of this paper.

2.5.2 Constrained Least Squares

With the fully calculated voltage vector and the complete admittance matrix, the current

vector can also be calculated. Therefore, a Constrained Least Squares algorithm (CLS)

with addition of boundaries is used. A review on constrained state estimation algorithms

can be found in [10]. Since the transformer is included in the distribution system all

currents must add up to 0. Thus, this information was used as a constraint with an added
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margin of 2%.

Initial values and standard deviations were set for each node according to table 2. The

standard deviation for ZIB was assumed to be near zero as ZIB never inject any current. For

measurement busses, the measurement inaccuracies depend on the type of measurement

device, thus standard deviations should be set accordingly. Finally, for estimation nodes

no information about measurement accuracy is available.

Additionally, upper and lower boundaries were de�ned based on the initial values and the

Node Type Current value Voltage Value Standard Deviation

Measurement as measured as measured dependent on device

ZIB 0A - 0.0001

Estimation - - -

Table 2 Initial values and standard deviation for each node type

standard deviation. For estimation nodes historical data can be used to obtain information

about which bus is not capable of feeding into the system, i.e. a bus with only consumers.

For those nodes an upper boundary of I = 0 was set. Likewise, a lower boundary for nodes

that are sole producers was set to I = 0.

Notably, the algorithm may diverge from the given boundaries and constraints if no feasible

solution is available within the given boundaries or constraints. Let I⃗1 be the incomplete

current vector consisting of complex currents and unknown values. Further, let I⃗2 be

the result of multiplication of the admittance matrix and the complete voltage vector

I⃗2 = A ∗ U⃗ . For the algorithm to function with complex numbers, I⃗1 and I⃗2 are converted

from Cn to R2n by splitting real and imaginary part and appending them, resulting in I⃗1c

and I⃗2c respectively. Then, we minimize the euclidean 2-norm given in 10.

||I⃗2c − I⃗1c ||2 (10)

In case the results did not converge to a feasible solution, methods were applied to reduce

the amount of unknown values as described in the following section.

Figure 1 shows a �owchart of all steps involved in the proposed state estimation algorithm.

The used methods are shown in purple, results in blue, additional input values in orange.

As described above, applying Principal Pivot Transform is optional.

3 Worst Case Scenarios

In general, those grids posed problematic to the algorithm that showed a lack of measure-

ments especially towards the end of the power line. However, it is not possible to identify

problematic networks based on network topology alone. The most deciding factor remains

a lack of measurements.

In order to decrease the amount of unknown values, estimation busses were converted

to ZIB with an assumed active current of zero. To ensure grid stability the nodes were
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Figure 1 State Estimation �ow chart as conducted in this research project
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converted in such a way that a worst-case topology is generated. This was achieved by

�rst identifying the estimation node that showed the highest divergence from the expected

value. Then, starting with the identi�ed node and moving on the line directly towards

the transformer the last estimation node before the nearest measurement node was con-

verted to a ZIB. This way, the algorithm assumes currents of the converted nodes must

be assigned to the node the furthest away from the transformer. This is de�ned as the

worst case scenario since it results in the highest possible voltage drop and line currents.

Figure 2 shows an exemplary radial grid topology with only one main branch. Assuming

Figure 2 Exemplary Grid Topology with estimation nodes marked as red, measurement nodes as
green and blind nodes as blue

the highest divergence from the expected value occurred in node 3,4 or 5, according to the

proposed worst case assumption, node 3 is converted as shown in �gure 3. Then, assuming

Figure 3 Exemplary Grid Topology with converted node at index 3

the highest divergence was shown at index 7 or 8, node 7 is converted as shown in �gure 4.
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After conversion of node 7, no further node on the lower branch can be converted. Node 8

needs to be left as estimation node so that the algorithms can assign power consumptions

on that line according to worst case scenarios. The �nal possible conversion is shown in

Figure 4 Exemplary Grid Topology with converted node at index 7

�gure 5. According to the proposed algorithm, no further node may be converted since

Figure 5 Exemplary Grid Topology with converted node at index 4; �nal con�guration, no more
simpli�cations possible

a conversion might result in unnoticed voltage drops or unnoticed transgression of the

maximum line current.

4 Results

The results presented in the following section are subject to an error made in the conversion

from the Per-Unit (PU) system used in Pandapower. However, the correct method of
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conversion is shown in section 6 and the corresponding �xed results are shown in section

4.2.

4.1 Flawed Results

This section was kept in this report to explain how even major errors in the calculation

may be unnoticed due to the nature of approximation algorithms. Figure 6 and 7 compare

results of the state estimation to actual voltage and current values as extracted from the

simulation environment. For each node the di�erence between the expected and actual

value was calculated. Then, each of the around 21000 grids was assigned a ratio of esti-

mation busses to measurement busses with values below 1 rounded down to the closest

�rst decimal. Notably, due to the simulation setup not all ratios are represented equally.

Finally, all grids with the same ratio value were grouped together and plotted. As can be

Figure 6 Flawed results: Voltage di�erence between expected and calculated values over ratio
between amount of estimation to measurement busses

seen, for lower ratios of estimation busses to measurement busses the estimation is highly

accurate. Even though the accuracy decreases with more estimation busses compared to

measurement busses and thus fewer known values, the results are still fairly accurate. It

shall be noted that the worst case strategies were only employed if the voltage deviated

more than 20 V from 230 V. This strategy results in outliers in simulation data. Thus,

outliers were removed in the �nal calculations. To tackle this issue, an exhaustive search

for the optimal solution may be used in future work at the cost of additional computational

complexity. Further, the di�erence from expected values does not accurately re�ect worst
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case scenarios as the voltage di�erence deviates in negative direction resulting in lower cal-

culated voltage drops than might actually exist. Only few cases existed where the voltage

di�erence was positive. This is also caused by the wrong conversion from the PU-System.

As can be seen, the constrained and bounded minimization forced the results into an

Figure 7 Flawed results: Current di�erence between expected and calculated values over ratio
between amount of estimation to measurement busses

acceptable range and correctly depicted the expected trend that higher measurement re-

dundancy results in better estimations. Thus, the major error in unit conversion went

unnoticed for a long time.

4.2 Fixed Results

In this section, results will be shown with the �xed unit conversions. Additionally, worst

case strategies were not only employed if the voltage level deviated from an acceptable range

as in the �awed results above. Instead, worst case strategies were always employed until all

possible node conversions were complete as described in section 3. After each conversion,

the state estimation results were saved based on the updated ratio of estimation busses to

measurement busses. Therefore, results in this section show not only the best estimates

but all estimates relative to their respective ratios.

Thus, one can see higher overall deviations since problematic con�gurations were left in the

data instead of only showing their best estimates after employment of worst case strategies.

Additionally, the computational complexity greatly increased in this approach due to the
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increased amount of state estimations computed. Because of time constraints, the following

results show only 200 out of the total about 21000 grids. Figures 8, 9, 10, 11 show the

Figure 8 Fixed Results: Current di�erence between expected and calculated values over ratio
between amount of estimation to measurement busses; with PPT applied

Figure 9 Fixed Results: Current di�erence between expected and calculated values over ratio
between amount of estimation to measurement busses; without PPT applied

�xed results as a di�erence between expected and calculated values. In �gures 8 and 10

PPT was applied �rst as explained in section 2.5.1. Notably, once again not all ratios are

represented equally. Since always all possible conversions of estimation nodes to ZIB were

included in the data, lower ratios are heavily over-represented.

In �rst tests, applying a constrained and bounded minimization twice, once for calculating

one side of unknowns as described in chapter 2.5 and again for calculating the leftover

unknowns as described in chapter 2.5.2 resulted in better overall values for ratios up to 3.

4.3 Possible improvements

Using a symmetric simpli�ed equivalent network for low voltage systems that are mostly

operated asymmetrically may result in increased errors [5]. Because of that, the calculation

can be performed using symmetric components. In addition, the proposed algorithms need
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Figure 10 Fixed Results: Voltage di�erence between expected and calculated values over ratio
between amount of estimation to measurement busses; with PPT applied

Figure 11 Fixed Results: Voltage di�erence between expected and calculated values over ratio
between amount of estimation to measurement busses; without PPT applied



5 Examples 14

to be compared to traditional algorithms with regard to performance and accuracy. Fur-

ther, estimation and measurement nodes were assigned �xed values that did not alternate

throughout the simulation. Instead, load pro�les should be used in future work. Finally,

the proposed algorithm should be tested outside of simulations and in varying scenarios.

5 Examples

In the following section, example calculations for the above explained algorithms are given.

Indices will be given starting at zero and results are trimmed to three decimal places.

u0

u1

241.970

238.534

u4

241.694

u6


·



8.335 −8.333 0 0 0 0 0

−8.333 16.527 −4.347 0 0 −3.846 0

0 −4.347 7.289 −2.941 0 0 0

0 0 −2.941 5.163 −2.222 0 0

0 0 0 −2.222 2.222 0 0

0 −3.846 0 0 0 5.338 −1.492

0 0 0 0 0 −1.492 1.492


=



i0

0

0

0

i4

0

i6


The equation above shows an exemplary starting point applying Ohm's Law (see equation

2) with a known admittance matrix, some known node voltages and some known currents.

5.1 Principal Pivot Transform

The node with index 1 has a known current of i1 = 0A and an unknown voltage u1. Thus,

PPT can be applied with the given index α = [1] Since only one index will be swapped,

the principal submatrix will consist of only a single element.

A[α] =
[
a11

]
=

[
16.527

]
The other submatrices can be formed accordingly with ᾱ = [0, 2, 3, 4, 5, 6].

A[ᾱ] =



a00 a02 a03 a04 a05 a06

a20 a22 a23 a24 a25 a26

a30 a32 a33 a34 a35 a36

a40 a42 a43 a44 a45 a46

a50 a52 a53 a54 a55 a56

a60 a62 a63 a64 a65 a66


=



8.335 0 0 0 0 0

0 7.289 −2.941 0 0 0

0 −2.941 5.163 −2.222 0 0

0 0 −2.222 2.222 0 0

0 0 0 0 5.338 −1.492

0 0 0 0 −1.492 1.492


A[α, ᾱ] =

[
a10 a12 a13 a14 a15 a16

]
=

[
−8.333 −4.347 0 0 −3.846 0

]
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A[ᾱ, α] =



a01

a21

a31

a41

a51

a61


=



−8.333

16.527

−4.347

0

0

−3.846

0


Applying equation 6 results in the following matrix.

ppt(A,α) = B =



4.134 −0.504 −2.192 0 0 −1.939 0

0.504 0.060 0.263 −0 −0 0.232 −0

−2.192 −0.263 6.145 −2.941 0 −1.011 0

0 0 −2.941 5.163 −2.222 0 0

0 0 0 −2.222 2.222 0 0

−1.939 −0.232 −1.011 0 0 4.443 −1.492

0 0 0 0 0 −1.492 1.492


Now, the exchange operator can be applied to the voltage and current vector resulting in.

X⃗ =



i0

u1

i2

i3

i4

i5

i6


=



?

?

0

0

?

0

?


, Y⃗ =



u0

i1

u2

u3

u4

u5

u6


=



?

0

241.970

238.534

?

241.694

?


5.2 Equation transformation

Bringing all unknowns to the right side and all knowns to the left side results in the

following equations. With β = [2, 3, 5], γ = [1, 2, 3, 5], γ̄ = [0, 4, 6]

B[β, γ]·Y⃗ [γ]−X⃗[β] =

−0.263 6.145 −2.941 −1.011

0 −2.941 5.163 0

−0.232 −1.011 0 4.443

·


0

241.970

238.534

241.694

−

0

0

0

 =

540.940

520.029

829.230



−B[β, γ̄] · Y⃗ [γ̄] =

2.192 −0 −0

−0 2.222 −0

1.939 −0 1.492

 ·

y0

y4

y6


Therefore according to equation 3:540.940

520.029

829.230

 =

2.192 −0 −0

−0 2.222 −0

1.939 −0 1.492

 ·

y0

y4

y6
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If PPT is not applied, the starting equation can be immediately transformed with

β = [1, 2, 3, 5], γ = [2, 3, 5], γ̄ = [0, 1, 4, 6]

A[β, γ] · U⃗ [γ]− I⃗[β] =


−4.347 0.000 −3.846

7.289 −2.941 0.000

−2.941 5.163 0.000

0.000 0.000 5.338

 ·

241.970

238.534

241.694

−


0

0

0

0

 =


−1981.642

1062.234

520.029

1290.374



−A[β, γ̄] · U⃗ [γ̄] =


8.333 −16.527 −0.000 −0.000

−0.000 4.347 −0.000 −0.000

−0.000 −0.000 2.222 −0.000

−0.000 3.846 −0.000 1.492

 ·


u0

u1

u4

u6


Once again, according to equation 3

−1981.642

1062.234

520.029

1290.374

 =


8.333 −16.527 −0.000 −0.000

−0.000 4.347 −0.000 −0.000

−0.000 −0.000 2.222 −0.000

−0.000 3.846 −0.000 1.492

 ·


u0

u1

u4

u6


Notably, in both cases (with PPT and without PPT), the system is well-determined.

With PPT there are 3 equations and 3 unknowns without any linear dependence. Without

PPT there are 4 equations and 4 unknowns without any linear dependence. As explained

in section 2.5.1 in case of underdetermined systems, it is only possible to apply a QR-

Decomposition after applying PPT �rst due to the shape of the resulting matrix. Also,

solving a system with fewer equations and fewer unknowns might be bene�cial in some

cases (linear dependence). Thus, there might be some bene�t to applying PPT �rst.

Now, a weighted least squares can be used to approximately solve the above equation.

However, due to unknown measurement accuracies, in this speci�c case all weights were

equal. Using numpy least squares algorithm results in y0 = 246.759, y4 = 234.013, y6 =

234.973 with PPT and in u0 = 246.759, u1 = 244.313, u4 = 234.013, u6 = 234.973 without

using PPT �rst. For the sake of simplicity, in the following the values calculated from

using PPT �rst will be used. However, the algorithm is applicable to both cases.

The results of the weighted least squares can be �lled in Y⃗ which is now complete.

Y⃗ =



246.759

0

241.970

238.534

234.013

241.694

234.973
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5.3 Constrained Least Squares

In this speci�c example, no conversion from complex to real numbers is necessary. Bounds

for measured values were set to those values with an added deviation equal to the standard

deviation of that measurement. Lower bounds are shown on the left and upper bounds on

the right.

bounds =



0, 50

210, 250

−0.001, 0.001

−0.001, 0.001

−50, 0

−0.001, 0.001

−50, 0


The constrained and bounded minimization of B ∗ Y⃗ = X⃗ results in

X⃗ =



20.999

244.313

0

0

−10.001

0

−10


Finally, the exchange operator is reversed.

I⃗ =



20.999

0

0

0

−10.001

0

−10


, U⃗ =



246.759

244.313

241.970

238.534

234.013

241.694

234.973


6 Per Unit System Conversion

Voltages and admittance matrices are given in the per-unit (PU) system in Pandapower.

This simpli�es calculations especially in systems with transformers between di�erent volt-

age levels. In the PU-System values are expressed relative to a de�ned base unit [11].

In Pandapower grid voltage levels vn and the reference apparent power for per unit system

sn are required to transform values from and to the PU-System.

To transform an admittance matrix from the per-unit system, a reference admittance ma-

trix is established as follows. For each combination of from (i) and to (j) bus, a reference
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impedance (zr) is calculated as shown in equation 11.

zri,j =
vni × vnj

sn
(11)

These reference impedances can be converted to reference admittances yr = 1/zr and

combined into a reference admittance matrix as shown in equation 12.
yr1,1 yr1,2 . . . yr1,n−1 yr1,n

yr2,1 yr2,2 . . . yr2,n−1 yr2,n

. . . . . . . . . . . . . . .

yrm−1,1 yrm−1,2 . . . yrm−1,n−1 yrm−1,n

yrm,1 yrm,2 . . . yrm,n−1 yrm,n

 (12)

Finally, multiplying the reference admittance matrix with the per-unit admittance matrix

given by Pandapower results in the admittance matrix.

Y = Ypu ∗ Yr (13)
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