
Prototypical implementation of a load balancing
and control system for low-voltage grids

Johannes Kruse
Student @ Technische Hochschule Köln

Cologne (Köln), Germany

Abstract— As part of the PROGRESSUS research
project, the TH Köln is researching various concepts for
power flow optimization in the supply network. Various
algorithms are to be tested on a demonstrator in the
institute's laboratory. As a basis for the algorithms, an
energy management system (EMS) is to be created that
runs on a Raspberry Pi. The EMS will be developed
under several framework conditions. For example, the
programming language Python is to be used because
Python is very popular with a large proportion of the
staff. In the end, the functions should include data
acquisition from measuring devices, control of loads
(simulated with battery powered inverters), and cross-
node data exchange. This document will focus primarily
on the software so that at the end there is a good
understanding of the architecture and operation so that
others can continue the work.

1 INTRODUCTION
 Energy distribution in today's power grid is more
complex than it was a century ago. Among other
things, the steadily growing number of decentralised
energy producers in the grid ensures that power no
longer flows only from the large power plants to the
consumers, but is instead generated locally and
consumed over shorter distances. What at first seems to
be less lossy and therefore good, unfortunately also
brings with it some problems. Because decentralised
measurement data are often not collected across the
board, the grid operator can often only estimate the
grid status in the low-voltage grid. Also, the lines far
from the power plants are significantly smaller in size,
which means there is a risk of overload. Research
projects, such as PROGRESSUS, aim to develop
concepts that prepare the grid for such problems. The
so-called smart grid is a good alternative to otherwise
expensive line expansion. In this process, the actors of
the power grid are networked with each other, which
enables an optimisation of the power flow so that limit
values of voltages and loads can be observed.

 During the practical project at the TH-Cologne, I
realised a networking of the participants in the test
environment in cooperation with the company Devolo.
Measurement data from several network analysers can
be collected and exchanged between different nodes.
Based on the collected measurement data, the

algorithms can calculate an optimised target state.
Several battery-supported inverters, which are
distributed over the test environment, are available to
the control system as manipulated variables of the
power flow. By charging and discharging the batteries,
the power of the control can be adjusted
bidirectionally. The test setup itself is modular and
allows many different grid situations to be mapped. For
example, the grid topology can be adapted via a plug-in
panel. Likewise, different cable lengths can be used
and interconnected there.

 The software developed during the work includes
monitoring, data storage, automatic data exchange
between the nodes and offers interfaces for measured
values and control.

 The challenge of dealing with the existing problem,
learning more about it and developing my
programming skills motivated me throughout the work
and taught me a lot.

2 SOFTWARE-ANFORDERUNGEN
 As already mentioned, the development decisions
are closely linked to the requirements and wishes of the
PROGRESSUS staff at the TH Köln. This is of great
importance to ensure that the software is subsequently
used. The following is a list of the explicitly mentioned
requirements.

1. python is to be used as the programming
language.

2. the program should run on a Raspberry Pi and
be as performant as possible, because the
controls will also be integrated on the
Raspberry Pi

3. data from measuring devices should be
recorded at least once a minute.

4. the data should be stored historically so that
later analysis is possible.

5. data should be exchanged between the
Raspberry Pi across nodes so that each node
can make decisions autonomously. A central
server is not desired.

6. communication only takes place via the local
network. Internet access via the existing TH
network is not available to the Raspberry Pi.

To 1: Python is very popular among engineers.
Many staff and students at the TH Köln are also
familiar with Python, which is why it makes sense to
use it. Python aims to be easy to read and promotes a
concise programming style. For example, it is not
necessary to place a semicolon after each statement.
Also, statements within loops or if-conditions are only
structured by indenting them into blocks instead of
enclosing them with curly braces.

However, Python also has a few pitfalls that can lead to
problems if ignored. For example, data is not type safe
(unlike in C, for example). Python generally allows
similar data types to be mixed up. Thus, a data type can
quickly deviate from the expected data type if care is
not taken.

To 2.: Care was taken to ensure that the performance
of the software was as good as possible so that the
control algorithms would not be restricted later. This
was achieved by sleep instructions of the time module
in each loop. This ensures a significantly lower
utilization of the processor and gives enough time for
many necessary calculations.

To 3.: New measured values are distributed to all
nodes approximately once per second. With the
inverters, the data acquisition is less than three
seconds. This means that a time of significantly less
than a full minute is achieved. This enables a very
good analysis of the current grid status.

To 4: For data storage, a database is set up on the
Raspberry Pi. On Devolo's recommendation, I decided
to use an InfluxDB (database). It is fast and best suited
for simple data types such as floats. It also offers the
possibility of setting the data retention by means of
retention policies. This means you can also set how
long you want to store data and adapt this to the
available storage space.

To 5: The cross-rack data exchange is realized with
Zeroconf. Data packets are "held up" in the network
without additional setup. Other participants can
recognize this and access the data. The connection is
established automatically. The scalability of this
method (in terms of network load) has not been tested
but will probably not be suitable for large networks.

However, this method is well suited for the test setup at
TH Köln.

To 6: Due to a lack of internet access, missing
packages must be installed in a roundabout way. A
temporary internet hotspot via laptop or mobile phone
offers a remedy here. A problem not solved by this is
the time synchronization of the Raspberry Pi system
time. As soon as the Raspberry Pi is switched off, the
time no longer runs and must be resynchronized.
Usually this is done via the Internet connection.
Devolo has provided an IoT gateway that is connected
to the Internet via an LTE module. I set up the IoT
gateway as a time server. Using the Network Time
Protocol (NTP), the Raspberry Pi is now synchronized
within the first 15 minutes of operation. Unfortunately,
this leads to the first measured values being saved
under the wrong time, which leads to inaccuracies in
the data analysis.

3 SOFTWARE ARCHITECTURE
 For the software, I was inspired by the open-source
software OpenEMS. Because OpenEMS is written in
Java and therefore does not meet the requirements of
the TH, it was not implemented in the lab.

Figure 1: OpenEMS System Architecture

 Fig. 1 shows an overview of OpenEMS. In my
Python programme, I use the Python package Flask as
a web server. Via a Representational State Transfer
(REST) interface implemented there, control
commands can be sent to the inverters, either via other
programs using POST requests or manually via a web
interface using a browser tab. The web interface also
allows the current local measured values to be viewed.
External hardware, such as the inverters and the grid
analysers, are controlled via the Modbus TCP protocol.
To avoid implementing the protocol myself, I used the
Python package PyModbus. For data acquisition, an
Influx database is integrated on the Raspberry Pi. This
is well suited for simple data types. For the data
exchange between the racks I use Zeroconf. Zeroconf
or Zero Configuration Networking enables, as the
name suggests, network communication without
manual intervention by a person. Via multicast, devices
in the network are made recognisable, just like a
network printer discovery service (e.g. Bonjour or
Avahi). These can then be recognised by devices
operating on the same domain and receive data
provided.

 Fig. 2 again illustrates the schematic structure of the
energy management system developed at the end of
this work, which can be used for the regulations.

To keep the code clear, the individual tasks were
encapsulated in modules where possible. Accordingly,
the code is divided into several Python files. This is
particularly practical if a specific task area is to be
adapted.

The following Python modules are currently available:

1. cmd_list.py

2. database.py

3. DataCollector.py

4. DataGatherer.py

5. InverterModule.py

6. main.py

7. PowerMeterModule.py

8. webserver.py

9. zeroconf_browser.py

10. zeroconf_registration.py

The individual modules are explained in the later
subsections.

 A producer-consumer pattern is used so that a large
number of devices can be queried as quickly and
promptly as possible. An example of the functional
principle can be seen in Fig. 3. I use the standard
Python package threading for this. Worker threads and
consumer threads are thread safe connected to each
other via queues. Errors due to race conditions, which
can be caused by several threads accessing the same
variables/memory, are thus avoided. The worker threads
generate the necessary data, which is then taken from
the queues of consumer threads and processed. It should
be noted that the Python threading module only works
on one core. Although several tasks are added to the
thread pool, this does not provide true parallelism.
Thus, measured values from different measuring
devices cannot be retrieved perfectly simultaneously.
This was also not a goal and not a requirement.
Nevertheless, the measuring devices are queried at high
frequency (in the range of seconds) so that the network
status can be traced. The queues are also included as
standard in current Python versions. Internally, the
queues work with locks that block access to the content
until the processing thread releases them again.

The following figure shows the schematic structure and
clarifies which tasks the modules have and how they
communicate with each other.

Power Meter

Inverter

Data
exchange
with other

racks

Figure 2: EMS System

Data Management Multicast
Zeroconf

Webserve
r Rest-

API

Algorithms

Figure 4: Producer-Constumer-Pattern

Generates data with device queries
and puts them in queue

Receives data through queue and
processes it

Figure 3: Module overview

 The rectangular blocks show the modules used. The
module name is always at the top and a brief
description of the primary tasks is at the bottom. I
recommend referring to this illustration when
explaining the functions of the individual modules in
order to understand the entire context.

 External access via the existing interfaces is shown
in green and orange. Users can manually access the
web interface via a browser window using IP and port
(e.g. 192.168.11.43:5000 for rack 3). There, the current
of the local inverters can be set manually in an input
window. In addition, the current measured values can
be viewed.

 Only the var dict from the main.py is described
briefly here. It is a dictionary in which the current
measured values are temporarily stored. It follows a
fixed data structure and is used by the data gatherer,
the web server and the Zeroconf registration module.
All use manually set locks to ensure a thread-safe
process. One could replace the dictionary with more
queues. It was left over due to the development of the
programme over time and was created very early. In
order to save work in several modules, this was no
longer changed. One advantage of this is that the web
server does not have to keep all local readings in
another memory.

 The module cmd_list.py is not shown here. In the
module cmd_list there is only one class with an
enumeration for different commands. This saves
having to define commands repeatedly in modules that
work with command queues (cmd_queues).

 Two interfaces are also defined for external
programmes. The REST interface of the Flask web
server allows inverter currents to be set with just a few
lines of code. Current and past measured values can be
retrieved via a Python InfluxDB client, which provides
functions for the InfluxDB.

4 CONCLUSION
I was able to learn a lot of new things in my internship,
my practical project and my bachelor’s thesis, which
also went beyond the actual module plan of the degree
program. This was a very rewarding time, and I would
like to thank my professor, Mr. Eberhard
Waffenschmidt, and my contact person at Devolo,
Christop July. Both were always available to answer
my questions and provide me with assistance.

The work itself was characterized by some initial
difficulties, especially the communication difficulties
in the network with the inverters. But by the end of the
work, a stable state was achieved.

I would describe the development of the software as
successful. All the requirements of the TH could be

satisfied. Only the non-parallel communication of
several devices simultaneously with the inverter is a
pity. However, this is due to the inverter's system and
cannot be realized without a complete replacement.

Scalability was never a focus but the software will be
limited to smaller systems. Zeroconf can only be
operated in local networks and cannot go beyond
firewalls. In addition, network traffic increases with
each Zeroconf service, which may cause congestion.
However, with the low volumes in the lab, this is not a
problem, so all algorithms can be tested well.

If I had to do the same work again, I would learn from
some mistakes and approach a few things differently.
For example, I would probably remove the data
gatherer altogether and aim for a uniform structure
with only queues. I would also start logging right
away. I discovered this late in the project and
previously only worked with print commands. This
was also very instructive for me, as good error
management noticeably improves further work. Errors
that don't mean anything should always be avoided.

I found working with the Raspberry Pi remotely very
useful and will adopt it in future projects with Debian
operating systems. Possibly even to other OS should
this be possible. It was very pleasant for me not to have
to rebuild everything, especially because of my
rheumatism.

One thing I would have liked to try out is the use of the
"inspiration software" OpenEMS based on Java. I find
Java exciting and would have liked to get more
impressions of this programming language. I will make
up for this when I get the chance.

I hope that the documentation uploaded to the Sciebo
Cloud Service will enable all subsequent persons who
work with the software to work successfully.

	1 Introduction
	2 Software-Anforderungen
	3 Software architecture
	4 Conclusion

