

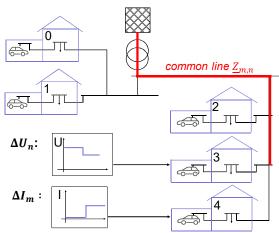
1358 Estimating Topologies of Low **Voltage Grids from Electric Vehicle Charging Station Measurement Data**

Christian Hotz IET, TH Köln, Germany

Marian Sprünken IET, TH Köln, Germany

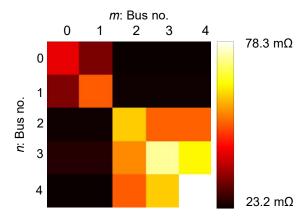
Sergej Baum IET, TH Köln, Germany

IET, TH Köln, Germany

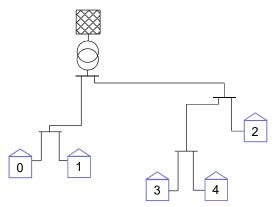

Ingo Stadler Eberhard Waffenschmidt IET, TH Köln, Germany

Objectives

Many smart grid applications require knowledge of the topology of the grid they operate in. If such data is not available, here's a solution.


Methodology

We assume a power grid with e-vehicles:


For each start of a charging cycle (Switch Event) on bus m we notice a voltage drop on bus n and derive the common line impedances:

$$\underline{Z}_{m,n} = \underline{\Delta}\underline{U}_n/\underline{\Delta}\underline{I}_m$$

Reconstruction as binary tree:

A recursive algorithm yields a binary tree representation of the reconstructed grid:

Noise and precision:

Estimations of line impedances are subject to noise. Statistical noise cancelling helps improve precision:

Median over n Switch Events	RMS error: reactance
4	333%
10	43.4 %
30	10.0 %
60	9.4 %
120	7.9 %
240	7.7 %

Conclusion:

Given sufficient measurement data, a complete and precise reconstruction of a not-meshed low-voltage grid is possible and can pave the way for sophisticated smart grid applications and other low-voltage grid related technology.