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Abstract—In many isolated off-grid areas diesel generators
are the common way of providing electricity. The high energy
cost and CO2 emissions might be reduced by implementing
PV plants with an attached battery storage into the micro-
grid. However, the correct dimensioning of both PV and
battery storage is crucial. Using a MATLAB/Simulink tool
based on previous work, such PV-Diesel systems can be
calculated for variable storage capacity, PV sizing and
dispatch strategies. To find a preferably efficient optimization
method in MATLAB, a genetic and a simplex algorithm are
compared. Optimization objectives were low levelized cost of
electricity (LCOE) or carbon dioxide (CO2) emissions, by
sizing photovoltaics and battery of the system. The specific
algorithms were chosen since they don’t rely on derivatives
as the Simulink calculation is discrete and non-linear. It
is shown that the simplex algorithm converges within a
couple of minutes and quiet faster than the genetic algorithm.
Furthermore, a multi-objective optimization is implemented
using an epsilon-constraint method. The user is able to
identify appropriate dimensioning with emphasis on different
targets by calculating distinct pareto optimal solutions.

I. INTRODUCTION

Many people in remote areas are living without access
to the public power grid. In these regions, often diesel
generators are used for supplying electricity. In Africa,
the number of people without access to electricity as
well as the usage of diesel generators is actually growing
due to the growth of population [1]. Because fuel is
expensive, it might be difficult to transport to far-off
locations and causes emissions, it is desirable to reduce
the fuel consumption in these setups. This can be done by
extending the micro-grid with PV modules and batteries
especially in locations with high sun irradiation. A bigger
dimensioning of the PV and battery systems increases
the energy yield from the sun, reduces fuel consumption
and C'Oz-emissions but will also require bigger invest-
ment costs. To plan a system before realization, a Mat-
lab/Simulink tool was developed by [2], which simulates
hybrid-PV-diesel systems for a certain installed power of
PV modules and a certain battery capacity. Since there are
two entry parameters and several possible, contradictory
objectives it is too extensive for the user of the tool to
find a desirable configuration manually. Therefore, pareto
optimal solutions are used on the tool to find the number
of PV modules and batteries that fit the preference of the
user best, regarding the specifics of the situation. This

paper aims to determine a time-saving solution for the
optimization of the PV and battery size for PV-diesel-
systems. Thereby, multi-objective optimization shall be
visualized using a pareto front, letting the later tool user
decide the weighting between objectives.

II. SIMULATION

In previous work, a MATLAB/Simulink tool was cre-
ated to design PV-Diesel systems. The tool is based on
advanced models for PV, diesel generators and optionally
a battery. For the PV the double diode model is used
to achieve a higher accuracy of PV power. The model
is able to consider technical data of real PV modules,
which are accessible in a data base. The battery model
by shepherd indicates the battery state depending of its
terminal voltage and experimentally measured discharge
curves. This paper, a lead acid battery is implemented.
For the diesel generator, a self-made model was used to
consider the load step behavior. Additional fuel consump-
tion is determined for load steps higher than 50Load and
Irradiation are based on imported profiles in increments
of 15 minutes over one year. For each time increment, the
system is balanced using a certain dispatch strategy. In
this paper, a dispatch strategy is used which balances the
residual load with the battery in the first priority. A diesel
generator is not started until the battery is discharged.
In addition, the battery relieves running generators in
order to ensure operation at a certain minimum load.
Thus, fluctuations of the PV plant are reasonably shared
among diesel generator and battery. Finally, this simulation
environment is implemented in a tool to variate the design
of PV and battery size. You can read more details about the
tool and simulation environment in the paper by Faf3bender
and Waffenschmidt [2].

III. OPTIMIZATION

Most optimization algorithms use derivative methods
for finding local or global minima. Since the tool is
based on a technical database of existing PV and battery
systems dimensioning steps correspond to the related mod-
ule sizes.For such a discrete problem, only optimization
algorithms with a non-derivative method can be used [3]].
Additionally, the problem is non-linear which further
reduces the number of suitable algorithms.
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Fig. 1. The different operations of the Nelder-Mead algorithm graphi-
cally explained [5]

A. Single-Objective Optimization

For identifying the best possible values for levelized
cost of energy and COs-savings, optimization is done
initially for both objectives solitary without evaluating
other objectives during the optimization process. For this
purpose, two algorithms were compared which are able to
minimize non-linear integral problems. On the one hand,
there is the downhill simplex method after NELDER-
MEAD. Other than the more common Dantzig’s simplex
algorithm, it is able to solve non-linear problems.

A simplex is a n-dimensional body with n+1 corners, while
n being the number of parameters of the objective func-
tion. The coordinates of the corners are described by the
function parameters. In this case, there are two parameters,
installed PV power and battery capacity, thus, the simplex
is a triangle. In every iteration the function values at the
corners are evaluated and compared. The simplex changes
its shape and position via expansion, contraction, reflexion
or shrinking by changing the position of the corner bearing
the worst function value respectively moving the worst
and the second worst point towards the best one in case
of shrinking. These procedures are described in Fig. ??.
During several iterations the simplex becomes smaller and
moves towards lower function values. The choice of an
adequate initial point is crucial, otherwise, the solver will
halt at an unfeasible local minima [4].

The genetic algorithm mimics evolutionary processes to
find local and global minima. A certain quantity of in-
stances is created, each one is assigned a random set
of parameters. In each iteration, for every instance the
function values is evaluated. Instances with the most
adequate function values are moved to the next iteration
without changes, while instances with the worst function
values are removed from the pool. The other ones are
either randomly mutated or mixed to create new instances.
(6], (7

For comparing these algorithms in MATLAB the functions
ga for genetic and fminsearch for simplex optimization are
used. Additionally, fminsearch was expanded by additional
functions to account for constraints like minimum and
maximum number of batteries and PV modules.[8]]

B. Multi-Objective Optimization

When optimizing several competing objective functions
at once, not only points minimizing one particular function
are of interest, but also solutions in between. The goal is
to find the most suitable trade-off between the different

objectives. The basic criterion for a solution is to be
pareto-optimal, meaning that one objective value can only
be improved at the cost of degrading another one. For
instance, at a pareto-optimal point, the C'Os emissions
can only be reduced further by adding PV and/or battery
systems, thus increasing the investment costs. There is no
other configuration for the same or a lower price that leads
to less emissions. Deciding which pareto-optimal solution
is the most desirable, requires additional information.
How this information is applied varies between different
methods for solving multi-objective problems. For the PV-
Diesel system, methods of scalarizing were used. The
problem is reduced to a single objective-problem during
the optimization process. This was done both by using
either a weighting function or the e-constraint method,
respectively.

For the weighting function, each objective function f, a
certain weight w is assigned. The sum of the weighted
objectives is then minimized.

mmeZ(x)wl (1)
i=1

On the other side, for the e-constraint method just one
of the results is regarded as an actual objective, the other
ones are used as additional constraints.[9]

min fi(x)
fite) <€ j=1.k j#I
For instance, the solver will try to minimize the investment

cost while archiving a certain saving of CO2-emissions.
Both algorithm are compared in Fig. [2| Besides that defin-
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Fig. 2. The method of weighting function (1) to the e-constraint method
(r) is compared. Former is not able to find all pareto-optimal solution on
non-convex functions

ing appropriate weights might be difficult, the weighted
method is not able to identify all pareto-optimal solutions
on non-convex functions. Further on, accurate constraint
values rather than weights are better understandable for the
user. Therefore, the e-constraint function was preferred.

C. Application

To identify different points on the pareto-front, opti-
mization is done for several ¢ values. These are evenly
distributed between the respective optima. The number of
€ values created can be chosen by the user. The more
values are identified, the higher the resolution of the pareto
front and calculation time. For this paper, four additional
€ constraints were used for a higher resolution at critical
areas, resulting into a total of fifteen points including
optima of the solitary objective functions. The constraint
is implemented by extending the objective function by a



sub-function. Is a constraint exceeded, the sub-function
applies a penalty to the function value which is returned
to the optimization algorithm.

To reduce calculation time and because LCOE can be un-
derstood as a function of investment and fuel costs, hence
COs-savings, only investment cost and COy-emissions as
competing functions are used for the e-constraint method.
LCOE can later be calculated using the solutions identified
by the two-objective optimization. Thus, changing fuel
prices does not require a new optimization run.

IV. RESULTS

A. Comparison of simplex and genetic algorithm

In the beginning, simplex and genetic algorithm were
compared to each other using a set of random starting
points and boundary conditions. The simplex algorithm
converged smoothly and fast in under 20 iterations if given
a starting point within plausible limits. As plausible limits
the quadruple values of the point with lowest LCOE found
in a manual search, were chosen arbitrarily. Specifically,
the bounds were 240kW PV and 250kWh of battery.
Assigning randomized, yet higher starting points lead to a
significant higher calculation time, as shown for two start-
ing points in Fig. [3] For finding reliably global minima,
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Fig. 3. Convergence with simplex algorithm for plausible (I) and
implausible (r) upper bounds

it was found that the genetic algorithm needs at least 10
instances. This means, that after two iterations the genetic
algorithm already counts more function evaluations than
the simplex algorithm. Until convergence, the genetic
algorithm ran at least 10 iterations or up to 25 when
using higher upper bounds, resulting in more than 100
function evaluations, as shown in Fig. E} So while the
number of iterations needed by the Algorithm Genetic
Algorithm might even be lower as for the simplex one, the
number of function evaluations and thus calculation time
is much higher, as a single function evaluation requires a
whole simulation run. However, the calculation time also
strongly depends on the distance of the starting point to
the optimum.

The superior convergence of the simplex algorithm is due
to the smooth course of function with only a small number
of local minima. Otherwise the algorithm might not find
the desired minimum at all.
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Fig. 4. Convergence with genetic algorithm for plausible (1) and

implausible (r) upper bounds

B. Single-Objective Optima

The most interesting objective for a single-objective

optima is LCOE, since it lies within the room of feasible
solutions rather than at the boundaries. It is archived when
both C'O2-emissions and investment costs are relatively
low. The position of the optimum varies with changed
market prices. For the given system, the optimum was
with 56kW of PV and 71kWh of batteries.
The optimum of investment cost is obviously the reference
case, no PV and battery systems are installed at all. In
this case, only the new set of generators has to be paid
for. The optimum for C'Oz-Savings is 100%. This value
is reached when both PV and battery systems exceed a
certain threshold. There are endless points reaching this
optimum, however, only the one solution including both
threshold values offers a minimum of investment cost,
which opens the field for multi-objective optimization.

C. Multi-Objective Optima

As stated in part [[II-C| multi-objective optimization was

done for investment costs and C'O»-savings. Investment
costs were used as primary objective while using differ-
ent COq-savings as e-constrain. It should be noted that
the solving time of a single e-constraint optimum rises
considerably compared to the optimization without an €
constraint, a majority of the iterations is spent evaluating
points near the final optima but exceeding the limiter.
The results are given in Fig. 5} Each point represents the
cheapest possible option to achieve a certain reduction of
COs-emissions. It can be seen that investment costs rise
continuously for a higher reduction of emissions, because
a bigger PV and battery system is required. Even values of
98% can be reached within reasonable boundaries. For a
very high reduction of emissions, much bigger investments
are needed. This is quiet consistent with other literature,
which indicate the need of unfeasible big battery and PV
systems for high autarky degrees. [[10]
Diesel prices vary drastically for different places in the
world. From the identified pareto-optimal points in Fig. [5}
LCOE can quickly be evaluated using different prices. In
Fig. [6] LCOE are given for low diesel prices in Egypt of
0.2%/1 and medium ones in Tunisia of 0.65%/1, as well as
the high reference price of 0.9%/1 which was the global
average at the time of last check-up[11].
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Fig. 5. Pareto-Front of optimization of C'O2-savings and investment
costs

0.45

O 0980
0.4 ¥

— 0.35

0.3

0.250F-

LCOE [$/kWh

0.2

0 02 0.4 0.6 0.8 1
CO2 Savings

Fig. 6. LCOE over CO2-Savings for different prices of diesel on CO2
vs. investment costs - optimal points

It should be noted that investment cost and not LCOE
are optimal for the given points. In case of the reference,
or even higher prices, as found in India, China and most
western countries, LCOE falls with a higher reduction
of emissions, which is due to the lower spending on
expensive fuel. For very low fuel prices, LCOE actually
rises which higher reduction, as fuel costs are almost
negligible and investment costs are dominant. In between
LCOE remains constant for medium prices. For higher
reduction of emissions, different LCOE come closer to
each other as investment costs become more dominant
even with high fuel prices. For a very high reduction,
spending on fuel is negligible while as investment costs
become very big, hence no difference between fuel prices
is recognizable.

According to Figure [/} the pareto optimal sizes varies up
to a 151 kWp PV system and 157 kWh battery capacity.
However, CO- savings of 98% are already achieved at 66
kWp and 90 kWh. In case of a diesel price of 0,9 $/1, the
minimum LCOE is achieved with 56 kWp and 69 kWh.
Furthermore, batteries larger than 3 kWh are only pareto
optimal with PV plants larger than 26 kWp.
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Fig. 7. Battery capacity and installed PV power according to the pareto
front between the optima of CO2 savings and investment costs.

V. CONCLUSION

In this paper, different optimization algorithms were
used on a simulating tool for PV-Diesel-hybrid systems.
It was found, that a downhill-simplex algorithm converges
in under a fifth of the time the genetic algorithm needs,
due to the shorter calculation time per iteration.

The optimal dimensioning of PV-modules and battery
storage for low LCOE can quickly be identified, often
in under 25 iterations. For a compromise between low
CO;-emissions and investment costs it is now possible
to visualize and compare an arbitrary number of pareto-
optimal points using the e-constraint method. It was found
that there is one dimensioning of PV and battery systems
for an optimal LCOE and investment cost rise with C'Os-
savings roughly linearly up to 98% of saved emissions.
However, costs rise sharply beyond this point.

The created tools can be used in development projects
where a PV-diesel hybrid system might be installed. The
size of the PV and battery systems for the most eco-
nomical and/or ecological supply of energy is efficiently
determined.
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